These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36502282)

  • 1. Reversible Discharge Products in Li-Air Batteries.
    Liu T; Zhao S; Xiong Q; Yu J; Wang J; Huang G; Ni M; Zhang X
    Adv Mater; 2023 May; 35(20):e2208925. PubMed ID: 36502282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization.
    Chen K; Yang DY; Huang G; Zhang XB
    Acc Chem Res; 2021 Feb; 54(3):632-641. PubMed ID: 33449629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Materials to Address the Lithium Battery Challenges.
    Rojaee R; Shahbazian-Yassar R
    ACS Nano; 2020 Mar; 14(3):2628-2658. PubMed ID: 32083832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
    Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G
    Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Lithium-Oxygen Batteries Based on Lithium Hydroxide Formation and Decomposition.
    Zhang X; Dong P; Song MK
    Front Chem; 2022; 10():923936. PubMed ID: 35844634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the Role of Discharge Products in Li-CO
    Zou J; Liang G; Zhang F; Zhang S; Davey K; Guo Z
    Adv Mater; 2023 Dec; 35(49):e2210671. PubMed ID: 37171977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance.
    Guo X; Sun B; Su D; Liu X; Liu H; Wang Y; Wang G
    Sci Bull (Beijing); 2017 Mar; 62(6):442-452. PubMed ID: 36659288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li-Air Batteries.
    Liu L; Guo H; Fu L; Chou S; Thiele S; Wu Y; Wang J
    Small; 2021 Mar; 17(9):e1903854. PubMed ID: 31532893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemistry of oxygen in rechargeable Li-O
    Du D; Zhu Z; Chan KY; Li F; Chen J
    Chem Soc Rev; 2022 Mar; 51(6):1846-1860. PubMed ID: 35195634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-Air Batteries with Hybrid Electrolytes.
    He P; Zhang T; Jiang J; Zhou H
    J Phys Chem Lett; 2016 Apr; 7(7):1267-80. PubMed ID: 26977713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
    McCloskey BD; Bethune DS; Shelby RM; Girishkumar G; Luntz AC
    J Phys Chem Lett; 2011 May; 2(10):1161-6. PubMed ID: 26295320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetically Stable Oxide Overlayers on Mo
    Kondori A; Jiang Z; Esmaeilirad M; Tamadoni Saray M; Kakekhani A; Kucuk K; Navarro Munoz Delgado P; Maghsoudipour S; Hayes J; Johnson CS; Segre CU; Shahbazian-Yassar R; Rappe AM; Asadi M
    Adv Mater; 2020 Dec; 32(50):e2004028. PubMed ID: 33169392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reversible long-life lithium-air battery in ambient air.
    Zhang T; Zhou H
    Nat Commun; 2013; 4():1817. PubMed ID: 23652005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Li-Air Battery with Ultralong Cycle Life in Ambient Air.
    Wang L; Pan J; Zhang Y; Cheng X; Liu L; Peng H
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29194803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives.
    Zhang H; Eshetu GG; Judez X; Li C; Rodriguez-Martínez LM; Armand M
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15002-15027. PubMed ID: 29442418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Easily Decomposed Discharge Products Induced by Cathode Construction for Highly Energy-Efficient Lithium-Oxygen Batteries.
    Fu J; Guo X; Huo H; Chen Y; Zhang T
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14803-14809. PubMed ID: 30924638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.