BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36502296)

  • 1. Cardiomyocyte maturation and its reversal during cardiac regeneration.
    Beisaw A; Wu CC
    Dev Dyn; 2024 Jan; 253(1):8-27. PubMed ID: 36502296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular and Molecular Mechanism of Cardiac Regeneration: A Comparison of Newts, Zebrafish, and Mammals.
    de Wit L; Fang J; Neef K; Xiao J; A Doevendans P; Schiffelers RM; Lei Z; Sluijter JPG
    Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32825069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MBNL1 Regulates Programmed Postnatal Switching Between Regenerative and Differentiated Cardiac States.
    Bailey LRJ; Bugg D; Reichardt IM; OrtaƧ CD; Nagle A; Gunaje J; Martinson A; Johnson R; MacCoss MJ; Sakamoto T; Kelly DP; Regnier M; Davis J
    Circulation; 2024 Jun; 149(23):1812-1829. PubMed ID: 38426339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Control of Cardiomyocyte Cell Cycle.
    Menendez-Montes I; Garry DJ; Zhang JJ; Sadek HA
    Methodist Debakey Cardiovasc J; 2023; 19(5):26-36. PubMed ID: 38028975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyploidy in Cardiomyocytes: Roadblock to Heart Regeneration?
    Derks W; Bergmann O
    Circ Res; 2020 Feb; 126(4):552-565. PubMed ID: 32078450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration.
    Padula SL; Velayutham N; Yutzey KE
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33807107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Changes Associated With Cardiomyocyte Dedifferentiation Enable Adult Mammalian Cardiac Regeneration.
    Cheng YY; Gregorich Z; Prajnamitra RP; Lundy DJ; Ma TY; Huang YH; Lee YC; Ruan SC; Lin JH; Lin PJ; Kuo CW; Chen P; Yan YT; Tian R; Kamp TJ; Hsieh PCH
    Circulation; 2022 Dec; 146(25):1950-1967. PubMed ID: 36420731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy.
    Mehdipour M; Park S; Huang GN
    J Mol Cell Cardiol; 2023 Apr; 177():9-20. PubMed ID: 36801396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth.
    Dimasi CG; Darby JRT; Morrison JL
    J Physiol; 2023 Apr; 601(8):1319-1341. PubMed ID: 36872609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AP-1 Contributes to Chromatin Accessibility to Promote Sarcomere Disassembly and Cardiomyocyte Protrusion During Zebrafish Heart Regeneration.
    Beisaw A; Kuenne C; Guenther S; Dallmann J; Wu CC; Bentsen M; Looso M; Stainier DYR
    Circ Res; 2020 Jun; 126(12):1760-1778. PubMed ID: 32312172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adult Cardiomyocyte Proliferation: a New Insight for Myocardial Infarction Therapy.
    Zhu F; Meng Q; Yu Y; Shao L; Shen Z
    J Cardiovasc Transl Res; 2021 Jun; 14(3):457-466. PubMed ID: 32820393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced Cardiomyocyte Proliferation: A Promising Approach to Cure Heart Failure.
    Salama ABM; Gebreil A; Mohamed TMA; Abouleisa RRE
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cannabidiol represses miR-143 to promote cardiomyocyte proliferation and heart regeneration after myocardial infarction.
    Ren Z; Liu Y; Cai A; Yu Y; Wang X; Lan L; Guo X; Yan H; Gao X; Li H; Tian Y; Ji H; Chen H; Ding F; Ma W; Wang N; Cai B; Yang B
    Eur J Pharmacol; 2024 Jan; 963():176245. PubMed ID: 38052413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia-induced myocardial regeneration.
    Kimura W; Nakada Y; Sadek HA
    J Appl Physiol (1985); 2017 Dec; 123(6):1676-1681. PubMed ID: 28819000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building and re-building the heart by cardiomyocyte proliferation.
    Foglia MJ; Poss KD
    Development; 2016 Mar; 143(5):729-40. PubMed ID: 26932668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiomyocyte proliferation, a target for cardiac regeneration.
    Payan SM; Hubert F; Rochais F
    Biochim Biophys Acta Mol Cell Res; 2020 Mar; 1867(3):118461. PubMed ID: 30930108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malonate Promotes Adult Cardiomyocyte Proliferation and Heart Regeneration.
    Bae J; Salamon RJ; Brandt EB; Paltzer WG; Zhang Z; Britt EC; Hacker TA; Fan J; Mahmoud AI
    Circulation; 2021 May; 143(20):1973-1986. PubMed ID: 33666092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged Myocardial Regenerative Capacity in Neonatal Opossum.
    Nishiyama C; Saito Y; Sakaguchi A; Kaneko M; Kiyonari H; Xu Y; Arima Y; Uosaki H; Kimura W
    Circulation; 2022 Jul; 146(2):125-139. PubMed ID: 35616010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippo Deficiency Leads to Cardiac Dysfunction Accompanied by Cardiomyocyte Dedifferentiation During Pressure Overload.
    Ikeda S; Mizushima W; Sciarretta S; Abdellatif M; Zhai P; Mukai R; Fefelova N; Oka SI; Nakamura M; Del Re DP; Farrance I; Park JY; Tian B; Xie LH; Kumar M; Hsu CP; Sadayappan S; Shimokawa H; Lim DS; Sadoshima J
    Circ Res; 2019 Jan; 124(2):292-305. PubMed ID: 30582455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-coding RNAs in Cardiac Regeneration.
    van der Ven CFT; Hogewoning BCR; van Mil A; Sluijter JPG
    Adv Exp Med Biol; 2020; 1229():163-180. PubMed ID: 32285411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.