These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36502343)

  • 21. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 22. Highest ambulatory speed using Lokomat gait training for individuals with a motor-complete spinal cord injury: a clinical pilot study.
    van Silfhout L; Váňa Z; Pĕtioký J; Edwards MJR; Bartels RHMA; van de Meent H; Hosman AJF
    Acta Neurochir (Wien); 2020 Apr; 162(4):951-956. PubMed ID: 31873795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review.
    Hayes SC; James Wilcox CR; Forbes White HS; Vanicek N
    J Spinal Cord Med; 2018 Sep; 41(5):529-543. PubMed ID: 29400988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study.
    Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M
    Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study.
    Xiang XN; Zong HY; Ou Y; Yu X; Cheng H; Du CP; He HC
    J Neuroeng Rehabil; 2021 May; 18(1):86. PubMed ID: 34030720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation.
    Calabrò RS; Billeri L; Ciappina F; Balletta T; Porcari B; Cannavò A; Pignolo L; Manuli A; Naro A
    Expert Rev Med Devices; 2022 Jan; 19(1):83-95. PubMed ID: 33616471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cardiopulmonary function after robotic exoskeleton-assisted over-ground walking training of a patient with an incomplete spinal cord injury: Case report.
    Jang YC; Park HK; Han JY; Choi IS; Song MK
    Medicine (Baltimore); 2019 Dec; 98(50):e18286. PubMed ID: 31852105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review.
    Nam KY; Kim HJ; Kwon BS; Park JW; Lee HJ; Yoo A
    J Neuroeng Rehabil; 2017 Mar; 14(1):24. PubMed ID: 28330471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.
    Tanabe S; Koyama S; Saitoh E; Hirano S; Yatsuya K; Tsunoda T; Katoh M; Gotoh T; Furumoto A
    NeuroRehabilitation; 2017; 41(1):85-95. PubMed ID: 28527225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Safety and feasibility of exoskeleton-assisted walking during acute/sub-acute SCI in an inpatient rehabilitation facility: A single-group preliminary study.
    Delgado AD; Escalon MX; Bryce TN; Weinrauch W; Suarez SJ; Kozlowski AJ
    J Spinal Cord Med; 2020 Sep; 43(5):657-666. PubMed ID: 31603395
    [No Abstract]   [Full Text] [Related]  

  • 34. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study.
    Lam T; Pauhl K; Ferguson A; Malik RN; ; Krassioukov A; Eng JJ
    J Rehabil Res Dev; 2015; 52(1):113-29. PubMed ID: 26230667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury.
    Alamro RA; Chisholm AE; Williams AMM; Carpenter MG; Lam T
    J Neuroeng Rehabil; 2018 Nov; 15(1):109. PubMed ID: 30458839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study.
    Xiang XN; Ding MF; Zong HY; Liu Y; Cheng H; He CQ; He HC
    Spinal Cord; 2020 Jul; 58(7):787-794. PubMed ID: 32034295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review.
    Singh H; Unger J; Zariffa J; Pakosh M; Jaglal S; Craven BC; Musselman KE
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):704-715. PubMed ID: 29334467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury.
    Ma TT; Zhang Q; Zhou TT; Zhang YQ; He Y; Li SJ; Liu QJ
    NeuroRehabilitation; 2022; 51(3):499-508. PubMed ID: 35964210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings.
    Swank C; Trammell M; Bennett M; Ochoa C; Callender L; Sikka S; Driver S
    Int J Rehabil Res; 2020 Sep; 43(3):206-213. PubMed ID: 32282573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.