BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36502493)

  • 1. Investigating peak dispersion in free-flow counterflow gradient focusing due to electroosmotic flow.
    Courtney M; Glawdel T; Ren CL
    Electrophoresis; 2023 Apr; 44(7-8):646-655. PubMed ID: 36502493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating peak dispersion in free-flow counterflow gradient focusing.
    Courtney M; Glawdel T; Ren CL
    Electrophoresis; 2022 Mar; 43(5-6):776-784. PubMed ID: 34679205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counterflow Gradient Focusing in Free-Flow Electrophoresis for Protein Fractionation.
    Courtney M; Thompson E; Glawdel T; Ren CL
    Anal Chem; 2020 May; 92(10):7317-7324. PubMed ID: 32336087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taylor dispersion in equilibrium gradient focusing at steady state.
    Ivory CF
    Electrophoresis; 2015 Mar; 36(5):662-7. PubMed ID: 25521436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2015 Jul; 1404():124-30. PubMed ID: 26044384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels.
    Xia L; Deb R; Yanagisawa N; Dutta D
    Anal Chim Acta; 2022 Nov; 1233():340476. PubMed ID: 36283775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotachophoresis with counterflow in an open capillary: computer simulation and experimental validation.
    Liu B; Ivory CF
    J Sep Sci; 2013 Jun; 36(12):1986-95. PubMed ID: 23559546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counterflow gradient electrophoresis for focusing and elution.
    Courtney M; Ren CL
    Electrophoresis; 2019 Mar; 40(5):643-658. PubMed ID: 30556281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of electrophoretic focusing on an inverse electromigration dispersion profile.
    Gebauer P
    Electrophoresis; 2020 Apr; 41(7-8):471-480. PubMed ID: 31550388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of 2 micron inner diameter open tubular column liquid chromatography with pressure-driven isocratic, slip-flow, and electrochromatographic modes of operation: a theoretical study.
    Schure MR; Beauchamp MD
    J Chromatogr A; 2021 Feb; 1638():461818. PubMed ID: 33516049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Stream Broadening in Free-Flow Electrophoretic Systems Based on the Method-of-Moments Formulation.
    Dutta D
    Methods Mol Biol; 2019; 1906():167-195. PubMed ID: 30488393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite sample effect in temperature gradient focusing.
    Lin H; Shackman JG; Ross D
    Lab Chip; 2008 Jun; 8(6):969-78. PubMed ID: 18497919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing.
    Dutta D
    J Chromatogr A; 2017 Feb; 1484():85-92. PubMed ID: 28081900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic flow in microchannels with nanostructures.
    Yasui T; Kaji N; Mohamadi MR; Okamoto Y; Tokeshi M; Horiike Y; Baba Y
    ACS Nano; 2011 Oct; 5(10):7775-80. PubMed ID: 21902222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.
    Ge Z; Wang W; Yang C
    Lab Chip; 2011 Apr; 11(7):1396-402. PubMed ID: 21331425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic and pressure-driven flow in open and packed capillaries: velocity distributions and fluid dispersion.
    Tallarek U; Rapp E; Scheenen T; Bayer E; Van As H
    Anal Chem; 2000 May; 72(10):2292-301. PubMed ID: 10845377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems.
    Thormann W; Zhang CX; Caslavska J; Gebauer P; Mosher RA
    Anal Chem; 1998 Feb; 70(3):549-62. PubMed ID: 21644753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of magnetic field on electroosmotic flow of viscoelastic fluids in a microchannel.
    Wang X; Qiao Y; Qi H; Xu H
    Electrophoresis; 2021 Nov; 42(21-22):2347-2355. PubMed ID: 33811361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.