BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36502549)

  • 1. Silk fibroin bioscaffold from Bombyx mori and Antheraea assamensis elicits a distinct host response and macrophage activation paradigm in vivo and in vitro.
    Janani G; Zhang L; Badylak SF; Mandal BB
    Biomater Adv; 2023 Feb; 145():213223. PubMed ID: 36502549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs.
    Janani G; Nandi SK; Mandal BB
    Acta Biomater; 2018 Feb; 67():167-182. PubMed ID: 29223705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering.
    Singh YP; Bhardwaj N; Mandal BB
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21236-49. PubMed ID: 27459679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.
    Bhardwaj N; Rajkhowa R; Wang X; Devi D
    Int J Biol Macromol; 2015 Nov; 81():31-40. PubMed ID: 26226458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms.
    Saha S; Kundu B; Kirkham J; Wood D; Kundu SC; Yang XB
    PLoS One; 2013; 8(11):e80004. PubMed ID: 24260335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro Culture of Human Corneal Endothelium on Non-Mulberry Silk Fibroin Films for Tissue Regeneration.
    Ramachandran C; Gupta P; Hazra S; Mandal BB
    Transl Vis Sci Technol; 2020 Mar; 9(4):12. PubMed ID: 32818099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insight on the liquid silk from the middle silk gland of non-mulberry silkworm
    Goswami A; Devi D
    J Biomol Struct Dyn; 2023 Feb; 41(3):1128-1139. PubMed ID: 34939896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonmulberry Silk Fibroin Scaffold Shows Superior Osteoconductivity Than Mulberry Silk Fibroin in Calvarial Bone Regeneration.
    Sahu N; Baligar P; Midha S; Kundu B; Bhattacharjee M; Mukherjee S; Mukherjee S; Maushart F; Das S; Loparic M; Kundu SC; Ghosh S; Mukhopadhyay A
    Adv Healthc Mater; 2015 Aug; 4(11):1709-21. PubMed ID: 26084249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk as templates for hydroxyapatite biomineralization: A comparative study of Bombyx mori and Antheraea pernyi silkworm silks.
    Zhang H; You R; Yan K; Lu Z; Fan Q; Li X; Wang D
    Int J Biol Macromol; 2020 Dec; 164():2842-2850. PubMed ID: 32828890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior processability of Antheraea mylitta silk with cryo-milling: Performance in bone tissue regeneration.
    Parekh N; C K B; Kane K; Panicker A; Nisal A; Wangikar P; Agawane S
    Int J Biol Macromol; 2022 Jul; 213():155-165. PubMed ID: 35609838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and structure of silkworm cocoons: a comparative study of Bombyx mori, Antheraea assamensis, Antheraea pernyi and Antheraea mylitta silkworm cocoons.
    Zhang J; Kaur J; Rajkhowa R; Li JL; Liu XY; Wang XG
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3206-13. PubMed ID: 23706202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibroin silk proteins from the nonmulberry silkworm Philosamia ricini are biochemically and immunochemically distinct from those of the mulberry silkworm Bombyx mori.
    Ahmad R; Kamra A; Hasnain SE
    DNA Cell Biol; 2004 Mar; 23(3):149-54. PubMed ID: 15068584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering.
    Bhardwaj N; Singh YP; Devi D; Kandimalla R; Kotoky J; Mandal BB
    J Mater Chem B; 2016 Jun; 4(21):3670-3684. PubMed ID: 32263306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization.
    Kumar M; Gupta P; Bhattacharjee S; Nandi SK; Mandal BB
    Biomaterials; 2018 Dec; 187():1-17. PubMed ID: 30286320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine.
    Kumar JP; Mandal BB
    Free Radic Biol Med; 2017 Jul; 108():803-818. PubMed ID: 28476503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Bombyx mori and Antheraea pernyi silk fibroins and their blends as potential biomaterials.
    Suzuki S; Chirila TV; Edwards GA
    Prog Biomater; 2016 Dec; 5(3-4):193-198. PubMed ID: 27995586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers.
    Du S; Zhang J; Zhou WT; Li QX; Greene GW; Zhu HJ; Li JL; Wang XG
    J Colloid Interface Sci; 2016 Sep; 478():316-23. PubMed ID: 27314644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable anti-cancer drug loaded silk-based hydrogel for the prevention of cancer recurrence and post-lumpectomy tissue regeneration aiding triple-negative breast cancer therapy.
    Jaiswal C; Gupta T; Jadi PK; Moses JC; Mandal BB
    Biomater Adv; 2023 Feb; 145():213224. PubMed ID: 36516618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype.
    Dziki JL; Wang DS; Pineda C; Sicari BM; Rausch T; Badylak SF
    J Biomed Mater Res A; 2017 Jan; 105(1):138-147. PubMed ID: 27601305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.