These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36502606)
1. In silico guided designing of optimized benzochalcones derivatives as potent CYP1B1 inhibitors: An integrated in vitro and ONIOM study. Sharma H; Raju B; Narendra G; Kumar M; Verma H; Sharma B; Tung GK; Kumar Jain S; Brás NF; Silakari O J Mol Graph Model; 2023 Mar; 119():108390. PubMed ID: 36502606 [TBL] [Abstract][Full Text] [Related]
2. Multiple machine learning, molecular docking, and ADMET screening approach for identification of selective inhibitors of CYP1B1. Raju B; Verma H; Narendra G; Sapra B; Silakari O J Biomol Struct Dyn; 2022 Oct; 40(17):7975-7990. PubMed ID: 33769194 [TBL] [Abstract][Full Text] [Related]
3. CYP enzymes, expressed within live human suspension cells, are superior to widely-used microsomal enzymes in identifying potent CYP1A1/CYP1B1 inhibitors: Identification of quinazolinones as CYP1A1/CYP1B1 inhibitors that efficiently reverse B[a]P toxicity and cisplatin resistance. Sonawane VR; Siddique MUM; Gatchie L; Williams IS; Bharate SB; Jayaprakash V; Sinha BN; Chaudhuri B Eur J Pharm Sci; 2019 Apr; 131():177-194. PubMed ID: 30776468 [TBL] [Abstract][Full Text] [Related]
4. A new class of CYP1B1 inhibitors derived from bentranil. Yi L; Huang X; Yang M; Cai J; Jia J; Peng Z; Zhao Z; Yang F; Qiu D Bioorg Med Chem Lett; 2023 Jan; 80():129112. PubMed ID: 36565966 [TBL] [Abstract][Full Text] [Related]
5. Characterization of differences in substrate specificity among CYP1A1, CYP1A2 and CYP1B1: an integrated approach employing molecular docking and molecular dynamics simulations. Kesharwani SS; Nandekar PP; Pragyan P; Rathod V; Sangamwar AT J Mol Recognit; 2016 Aug; 29(8):370-90. PubMed ID: 26916064 [TBL] [Abstract][Full Text] [Related]
6. Perspective of structural flexibility on selective inhibition towards CYP1B1 over CYP1A1 by α-naphthoflavone analogs. Wang Y; Hu B; Zhang Y; Wang D; Luo Z; Wang J; Zhang F Phys Chem Chem Phys; 2021 Sep; 23(36):20230-20246. PubMed ID: 34474468 [TBL] [Abstract][Full Text] [Related]
7. Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme. Sharma R; Gatchie L; Williams IS; Jain SK; Vishwakarma RA; Chaudhuri B; Bharate SB Bioorg Med Chem Lett; 2017 Dec; 27(24):5400-5403. PubMed ID: 29150398 [TBL] [Abstract][Full Text] [Related]
8. Scaffold hopping for designing of potent and selective CYP1B1 inhibitors to overcome docetaxel resistance: synthesis and evaluation. Raju B; Narendra G; Verma H; Kumar M; Sapra B; Kaur G; Jain SK; Sandeep Chary P; Mehra NK; Silakari O J Biomol Struct Dyn; 2024 Feb; ():1-19. PubMed ID: 38356135 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and structure-activity relationship studies of α-naphthoflavone derivatives as CYP1B1 inhibitors. Dong J; Wang Z; Cui J; Meng Q; Li S Eur J Med Chem; 2020 Feb; 187():111938. PubMed ID: 31830634 [TBL] [Abstract][Full Text] [Related]
10. Theoretical investigation of differences in nitroreduction of aristolochic acid I by cytochromes P450 1A1, 1A2 and 1B1. Jerabek P; Martinek V; Stiborova M Neuro Endocrinol Lett; 2012; 33 Suppl 3():25-32. PubMed ID: 23353840 [TBL] [Abstract][Full Text] [Related]
11. Identification of Potent and Selective CYP1A1 Inhibitors via Combined Ligand and Structure-Based Virtual Screening and Their in Vitro Validation in Sacchrosomes and Live Human Cells. Joshi P; McCann GJP; Sonawane VR; Vishwakarma RA; Chaudhuri B; Bharate SB J Chem Inf Model; 2017 Jun; 57(6):1309-1320. PubMed ID: 28489395 [TBL] [Abstract][Full Text] [Related]
12. Aryl morpholino triazenes inhibit cytochrome P450 1A1 and 1B1. Lee D; Perez P; Jackson W; Chin T; Galbreath M; Fronczek FR; Isovitsch R; Iimoto DS Bioorg Med Chem Lett; 2016 Jul; 26(14):3243-3247. PubMed ID: 27265259 [TBL] [Abstract][Full Text] [Related]
13. Nitidine Chloride-Induced CYP1 Enzyme Inhibition and Alteration of Estradiol Metabolism. Mao X; Wang J; Wang Q; Yang L; Li Y; Lin H; Peng Y; Zheng J Drug Metab Dispos; 2019 Aug; 47(8):919-927. PubMed ID: 31147316 [TBL] [Abstract][Full Text] [Related]
15. Design and Synthesis of New α-Naphthoflavones as Cytochrome P450 (CYP) 1B1 Inhibitors To Overcome Docetaxel-Resistance Associated with CYP1B1 Overexpression. Cui J; Meng Q; Zhang X; Cui Q; Zhou W; Li S J Med Chem; 2015 Apr; 58(8):3534-47. PubMed ID: 25799264 [TBL] [Abstract][Full Text] [Related]
16. Discovery of heterocycle-containing α-naphthoflavone derivatives as water-soluble, highly potent and selective CYP1B1 inhibitors. Dong J; Huang G; Cui Q; Meng Q; Li S; Cui J Eur J Med Chem; 2021 Jan; 209():112895. PubMed ID: 33069055 [TBL] [Abstract][Full Text] [Related]
17. CYP1B1: A Promising Target in Cancer Drug Discovery. Fabris M; Luiza Silva M; de Santiago-Silva KM; de Lima Ferreira Bispo M; Goes Camargo P Anticancer Agents Med Chem; 2023; 23(9):981-988. PubMed ID: 36655529 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, Anti-Breast Cancer Activity, and Molecular Docking Study of a New Group of Acetylenic Quinolinesulfonamide Derivatives. Marciniec K; Pawełczak B; Latocha M; Skrzypek L; Maciążek-Jurczyk M; Boryczka S Molecules; 2017 Feb; 22(2):. PubMed ID: 28212337 [TBL] [Abstract][Full Text] [Related]