These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36502920)
21. Catalytic conversion of γ-valerolactone to ε-caprolactam: towards nylon from renewable feedstock. Raoufmoghaddam S; Rood MT; Buijze FK; Drent E; Bouwman E ChemSusChem; 2014 Jul; 7(7):1984-90. PubMed ID: 24938779 [TBL] [Abstract][Full Text] [Related]
22. Structural basis for high-affinity adipate binding to AdpC (RPA4515), an orphan periplasmic-binding protein from the tripartite tricarboxylate transporter (TTT) family in Rhodopseudomonas palustris. Rosa LT; Dix SR; Rafferty JB; Kelly DJ FEBS J; 2017 Dec; 284(24):4262-4277. PubMed ID: 29082669 [TBL] [Abstract][Full Text] [Related]
23. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis. Dai J; Finci L; Zhang C; Lahiri S; Zhang G; Peisach E; Allen KN; Dunaway-Mariano D Biochemistry; 2009 Mar; 48(9):1984-95. PubMed ID: 19154134 [TBL] [Abstract][Full Text] [Related]
24. C-H arylations of 1,2,3-triazoles by reusable heterogeneous palladium catalysts in biomass-derived γ-valerolactone. Tian X; Yang F; Rasina D; Bauer M; Warratz S; Ferlin F; Vaccaro L; Ackermann L Chem Commun (Camb); 2016 Jul; 52(63):9777-80. PubMed ID: 27419251 [TBL] [Abstract][Full Text] [Related]
25. Solvent effects in acid-catalyzed biomass conversion reactions. Mellmer MA; Sener C; Gallo JM; Luterbacher JS; Alonso DM; Dumesic JA Angew Chem Int Ed Engl; 2014 Oct; 53(44):11872-5. PubMed ID: 25214063 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of γ-Valerolactone from Carbohydrates and its Applications. Zhang Z ChemSusChem; 2016 Jan; 9(2):156-71. PubMed ID: 26733161 [TBL] [Abstract][Full Text] [Related]
27. Phototrophic Lactate Utilization by Govindaraju A; McKinlay JB; LaSarre B Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855 [TBL] [Abstract][Full Text] [Related]
28. Cascade upgrading of γ-valerolactone to biofuels. Yan K; Lafleur T; Wu X; Chai J; Wu G; Xie X Chem Commun (Camb); 2015 Apr; 51(32):6984-7. PubMed ID: 25797827 [TBL] [Abstract][Full Text] [Related]
29. Three-dimensional structure of xylonolactonase from Caulobacter crescentus: A mononuclear iron enzyme of the 6-bladed β-propeller hydrolase family. Pääkkönen J; Hakulinen N; Andberg M; Koivula A; Rouvinen J Protein Sci; 2022 Feb; 31(2):371-383. PubMed ID: 34761460 [TBL] [Abstract][Full Text] [Related]
30. The importance of the benzoic acid carboxylate moiety for substrate recognition by CYP199A4 from Rhodopseudomonas palustris HaA2. Coleman T; Chao RR; De Voss JJ; Bell SG Biochim Biophys Acta; 2016 Jun; 1864(6):667-675. PubMed ID: 26969786 [TBL] [Abstract][Full Text] [Related]
31. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis. Han J; Luterbacher JS; Alonso DM; Dumesic JA; Maravelias CT Bioresour Technol; 2015 Apr; 182():258-266. PubMed ID: 25704099 [TBL] [Abstract][Full Text] [Related]
34. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. Bell SG; Xu F; Forward I; Bartlam M; Rao Z; Wong LL J Mol Biol; 2008 Nov; 383(3):561-74. PubMed ID: 18762195 [TBL] [Abstract][Full Text] [Related]
35. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related]
36. Scope and Limitations of γ-Valerolactone (GVL) as a Green Solvent to be Used with Base for Fmoc Removal in Solid Phase Peptide Synthesis. Kumar A; Sharma A; de la Torre BG; Albericio F Molecules; 2019 Nov; 24(21):. PubMed ID: 31694279 [TBL] [Abstract][Full Text] [Related]
37. The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Pott RW; Howe CJ; Dennis JS Bioresour Technol; 2014; 152():464-70. PubMed ID: 24326037 [TBL] [Abstract][Full Text] [Related]
38. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol. Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556 [TBL] [Abstract][Full Text] [Related]
39. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Kim KK; Song HK; Shin DH; Hwang KY; Choe S; Yoo OJ; Suh SW Structure; 1997 Dec; 5(12):1571-84. PubMed ID: 9438866 [TBL] [Abstract][Full Text] [Related]
40. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis. Metzker G; Burtoloso AC Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]