These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36502958)

  • 1. Resolving the neural mechanism of core object recognition in space and time: A computational approach.
    Sadeghnejad N; Ezoji M; Ebrahimpour R; Zabbah S
    Neurosci Res; 2023 May; 190():36-50. PubMed ID: 36502958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A temporal hierarchical feedforward model explains both the time and the accuracy of object recognition.
    Heidari-Gorji H; Ebrahimpour R; Zabbah S
    Sci Rep; 2021 Mar; 11(1):5640. PubMed ID: 33707537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond core object recognition: Recurrent processes account for object recognition under occlusion.
    Rajaei K; Mohsenzadeh Y; Ebrahimpour R; Khaligh-Razavi SM
    PLoS Comput Biol; 2019 May; 15(5):e1007001. PubMed ID: 31091234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex.
    Jia X; Hong H; DiCarlo JJ
    Elife; 2021 Jun; 10():. PubMed ID: 34114566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Spatiotemporal Neural Dynamics of Object Recognition for Natural Images and Line Drawings.
    Singer JJD; Cichy RM; Hebart MN
    J Neurosci; 2023 Jan; 43(3):484-500. PubMed ID: 36535769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
    Cadieu CF; Hong H; Yamins DL; Pinto N; Ardila D; Solomon EA; Majaj NJ; DiCarlo JJ
    PLoS Comput Biol; 2014 Dec; 10(12):e1003963. PubMed ID: 25521294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing the objects of vision with neural networks.
    Peters B; Kriegeskorte N
    Nat Hum Behav; 2021 Sep; 5(9):1127-1144. PubMed ID: 34545237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in understanding object recognition in the human brain: deep neural networks, temporal dynamics, and context.
    Wardle SG; Baker C
    F1000Res; 2020; 9():. PubMed ID: 32566136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task modulation of the 2-pathway characterization of occipitotemporal and posterior parietal visual object representations.
    Xu Y; Vaziri-Pashkam M
    Neuropsychologia; 2019 Sep; 132():107140. PubMed ID: 31301350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing visual representations across human fMRI and computational vision.
    Leeds DD; Seibert DA; Pyles JA; Tarr MJ
    J Vis; 2013 Nov; 13(13):25. PubMed ID: 24273227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Human Object Vision: A Picture Is Worth a Thousand Representations.
    Bracci S; Op de Beeck HP
    Annu Rev Psychol; 2023 Jan; 74():113-135. PubMed ID: 36378917
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.