BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36503072)

  • 1. A tetrazine-responsive isonitrile-caged photosensitiser for site-specific photodynamic therapy.
    Xiong J; Xue EY; Wu Q; Lo PC; Ng DKP
    J Control Release; 2023 Jan; 353():663-674. PubMed ID: 36503072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel distyryl boron dipyrromethene with two functional tags for site-specific bioorthogonal photosensitisation towards targeted photodynamic therapy.
    Guo X; Wong RCH; Zhou Y; Ng DKP; Lo PC
    Chem Commun (Camb); 2019 Nov; 55(90):13518-13521. PubMed ID: 31608902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Precise Antitumoral Photodynamic Therapy Using a Dual Receptor-Mediated Bioorthogonal Activation Approach.
    Chu JCH; Wong CTT; Ng DKP
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202214473. PubMed ID: 36376249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-Responsive Double-Locked Photodynamic Molecular Beacon for Targeted Photodynamic Anticancer Therapy.
    Tam LKB; Chu JCH; He L; Yang C; Han KC; Cheung PCK; Ng DKP; Lo PC
    J Am Chem Soc; 2023 Apr; 145(13):7361-7375. PubMed ID: 36961946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bioorthogonal Antidote Against the Photosensitivity after Photodynamic Therapy.
    Xue EY; Yang C; Zhou Y; Ng DKP
    Adv Sci (Weinh); 2024 Mar; 11(11):e2306207. PubMed ID: 38161212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioorthogonally activatable photosensitiser for site-specific photodynamic therapy.
    Zhou Y; Wong RCH; Dai G; Ng DKP
    Chem Commun (Camb); 2020 Jan; 56(7):1078-1081. PubMed ID: 31872834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific Activation of Photosensitizer with Extrinsic Enzyme for Precisive Photodynamic Therapy.
    Xiong J; Chu JCH; Fong WP; Wong CTT; Ng DKP
    J Am Chem Soc; 2022 Jun; 144(23):10647-10658. PubMed ID: 35639988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilising hairpin DNA-conjugated distyryl boron dipyrromethene on gold@polydopamine core-shell nanorods for microRNA detection and microRNA-mediated photodynamic therapy.
    Dai G; Choi CKK; Zhou Y; Bai Q; Xiao Y; Yang C; Choi CHJ; Ng DKP
    Nanoscale; 2021 Apr; 13(13):6499-6512. PubMed ID: 33885529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot peptide cyclisation and surface modification of photosensitiser-loaded red blood cells for targeted photodynamic therapy.
    Chu JCH; Shao C; Ha SYY; Fong WP; Wong CTT; Ng DKP
    Biomater Sci; 2021 Nov; 9(23):7832-7837. PubMed ID: 34726672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Delivery and Site-Specific Activation of β-Cyclodextrin-Conjugated Photosensitizers for Photodynamic Therapy through a Supramolecular Bio-orthogonal Approach.
    Xue EY; Shi WJ; Fong WP; Ng DKP
    J Med Chem; 2021 Oct; 64(20):15461-15476. PubMed ID: 34662121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Specific Displacement-Driven Activation of Supramolecular Photosensitizing Nanoassemblies for Antitumoral Photodynamic Therapy.
    Xue EY; Yang C; Fong WP; Ng DKP
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):14903-14915. PubMed ID: 35333503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon photodynamic ablation of tumour cells using an RGD peptide-conjugated ruthenium(ii) photosensitiser.
    Zhao Z; Qiu K; Liu J; Hao X; Wang J
    Chem Commun (Camb); 2020 Oct; 56(83):12542-12545. PubMed ID: 32940288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo and in vitro characterisation of a protoporphyrin IX-cyclic RGD peptide conjugate for use in photodynamic therapy.
    Conway CL; Walker I; Bell A; Roberts DJ; Brown SB; Vernon DI
    Photochem Photobiol Sci; 2008 Mar; 7(3):290-8. PubMed ID: 18389145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional Singlet Oxygen Generation through a Bioorthogonal DNA-targeted Tetrazine Reaction.
    Linden G; Zhang L; Pieck F; Linne U; Kosenkov D; Tonner R; Vázquez O
    Angew Chem Int Ed Engl; 2019 Sep; 58(37):12868-12873. PubMed ID: 31291504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senolysis Enabled by Senescent Cell-Sensitive Bioorthogonal Tetrazine Ligation.
    Chang M; Dong Y; Xu H; Cruickshank-Taylor AB; Kozora JS; Behpour B; Wang W
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202315425. PubMed ID: 38233359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Tetrazine-Caged Carbon-Dipyrromethene as a Bioorthogonally Activatable Fluorescent Probe.
    Tam LKB; Lo PC; Cheung PCK; Ng DKP
    Chem Asian J; 2023 Sep; 18(17):e202300562. PubMed ID: 37489571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: an updated review.
    Kue CS; Ng SY; Voon SH; Kamkaew A; Chung LY; Kiew LV; Lee HB
    Photochem Photobiol Sci; 2018 Nov; 17(11):1691-1708. PubMed ID: 29845993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry.
    Liu L; Zhang D; Johnson M; Devaraj NK
    Nat Chem; 2022 Sep; 14(9):1078-1085. PubMed ID: 35788560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH- and Thiol-Responsive BODIPY-Based Photosensitizers for Targeted Photodynamic Therapy.
    Jiang XJ; Lau JT; Wang Q; Ng DK; Lo PC
    Chemistry; 2016 Jun; 22(24):8273-81. PubMed ID: 27139139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafluorogenic Monochromophore-Type BODIPY-Tetrazine Series for Dual-Color Bioorthogonal Imaging with a Single Probe.
    Kim D; Son H; Park SB
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202310665. PubMed ID: 37749957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.