These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
577 related articles for article (PubMed ID: 36503442)
1. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442 [TBL] [Abstract][Full Text] [Related]
2. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255 [TBL] [Abstract][Full Text] [Related]
3. Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds. Chen W; Nichols L; Brinkley F; Bohna K; Tian W; Priddy MW; Priddy LB Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111686. PubMed ID: 33545848 [TBL] [Abstract][Full Text] [Related]
4. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release. Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323 [TBL] [Abstract][Full Text] [Related]
5. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
6. Nano-hydroxy apatite/chitosan/gelatin scaffolds enriched by a combination of platelet-rich plasma and fibrin glue enhance proliferation and differentiation of seeded human dental pulp stem cells. Sadeghinia A; Davaran S; Salehi R; Jamalpoor Z Biomed Pharmacother; 2019 Jan; 109():1924-1931. PubMed ID: 30551447 [TBL] [Abstract][Full Text] [Related]
7. 3D Printed Platelet-Rich Plasma-Loaded Scaffold with Sustained Cytokine Release for Bone Defect Repair. Liu C; Peng Z; Xu H; Gao H; Li J; Jin Y; Wang Y; Wang C; Liu Y; Hu Y; Jiang C; Guo J; Zhu L Tissue Eng Part A; 2022 Aug; 28(15-16):700-711. PubMed ID: 35152730 [TBL] [Abstract][Full Text] [Related]
8. The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects. Liu Z; Yuan X; Fernandes G; Dziak R; Ionita CN; Li C; Wang C; Yang S Stem Cell Res Ther; 2017 May; 8(1):122. PubMed ID: 28545565 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
10. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine. Zhao Q; Li G; Wang T; Jin Y; Lu W; Ji J Stem Cells Dev; 2021 May; 30(10):548-559. PubMed ID: 33736461 [TBL] [Abstract][Full Text] [Related]
11. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering. Chi M; Li N; Cui J; Karlin S; Rohr N; Sharma N; Thieringer FM Front Bioeng Biotechnol; 2022; 10():989729. PubMed ID: 36159699 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Sadeghianmaryan A; Naghieh S; Yazdanpanah Z; Alizadeh Sardroud H; Sharma NK; Wilson LD; Chen X Int J Biol Macromol; 2022 Apr; 204():62-75. PubMed ID: 35124017 [TBL] [Abstract][Full Text] [Related]
14. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064 [TBL] [Abstract][Full Text] [Related]
15. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related]
16. The Masquelet induced membrane technique with PRP-FG-nHA/PA66 scaffold can heal a rat large femoral bone defect. Wang X; Huang Y; Liu D; Zeng T; Wang J; Al Hasan MJ; Liu W; Wang D BMC Musculoskelet Disord; 2024 Jun; 25(1):455. PubMed ID: 38851675 [TBL] [Abstract][Full Text] [Related]
17. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
18. Reconstructing Critical-Sized Mandibular Defects in a Rabbit Model: Enhancing Angiogenesis and Facilitating Bone Regeneration via a Cell-Loaded 3D-Printed Hydrogel-Ceramic Scaffold Application. Sajad Daneshi S; Tayebi L; Talaei-Khozani T; Tavanafar S; Hadaegh AH; Rasoulianboroujeni M; Rastegari B; Asadi-Yousefabad SL; Nammian P; Zare S; Mussin NM; Kaliyev AA; Zhelisbayeva KR; Tanideh N; Tamadon A ACS Biomater Sci Eng; 2024 May; 10(5):3316-3330. PubMed ID: 38619014 [TBL] [Abstract][Full Text] [Related]
19. Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide. Xu D; Xu Z; Cheng L; Gao X; Sun J; Chen L Heliyon; 2022 Jun; 8(6):e09748. PubMed ID: 35761932 [TBL] [Abstract][Full Text] [Related]
20. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide. Zhou J; Guo X; Zheng Q; Wu Y; Cui F; Wu B Colloids Surf B Biointerfaces; 2017 Apr; 152():124-132. PubMed ID: 28103529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]