These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36503455)

  • 1. The Patent Landscape of Polyhydroxyalkanoates Production by Algae and Cyanobacteria.
    Procópio DP; Cardoso LOB; Borrego BB; Gracioso LH; Oller Nascimento CA; Perpetuo EA; Stevani CV; Freire RS
    Recent Pat Biotechnol; 2023; 17(3):271-288. PubMed ID: 36503455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae as source of polyhydroxyalkanoates (PHAs) - A review.
    Costa SS; Miranda AL; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2019 Jun; 131():536-547. PubMed ID: 30885732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of Global Trend on Biomedical Application of Polyhydroxyalkanoate (PHA): A Patent Survey.
    Paulraj P; Vnootheni N; Chandramohan M; Thevarkattil MJP
    Recent Pat Biotechnol; 2018; 12(3):186-199. PubMed ID: 29384069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends in PHA Production by Microbially Diverse and Functionally Distinct Communities.
    Angra V; Sehgal R; Gupta R
    Microb Ecol; 2023 Feb; 85(2):572-585. PubMed ID: 35333950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications.
    Behera S; Priyadarshanee M; Vandana ; Das S
    Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation.
    Ma R; Li J; Tyagi RD; Zhang X
    Bioresour Technol; 2024 Jan; 391(Pt A):129977. PubMed ID: 37925086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review.
    Yoon J; Oh MK
    Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprocess Engineering Aspects of Sustainable Polyhydroxyalkanoate Production in Cyanobacteria.
    Kamravamanesh D; Lackner M; Herwig C
    Bioengineering (Basel); 2018 Dec; 5(4):. PubMed ID: 30567391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.
    Kumar A; Srivastava JK; Mallick N; Singh AK
    Recent Pat Biotechnol; 2015; 9(1):4-21. PubMed ID: 26073514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?
    Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z
    Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of polyhydroxyalkanoates containing monomers conferring amorphous and elastomeric properties from renewable resources: Current status and future perspectives.
    Min Song H; Chan Joo J; Hyun Lim S; Jin Lim H; Lee S; Jae Park S
    Bioresour Technol; 2022 Dec; 366():128114. PubMed ID: 36283671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algal-based bioplastics: global trends in applied research, technologies, and commercialization.
    Mogany T; Bhola V; Bux F
    Environ Sci Pollut Res Int; 2024 Jun; 31(26):38022-38044. PubMed ID: 38787471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli.
    Leong YK; Show PL; Ooi CW; Ling TC; Lan JC
    J Biotechnol; 2014 Jun; 180():52-65. PubMed ID: 24698847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in cyanobacterial polyhydroxyalkanoates production.
    Singh AK; Mallick N
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 28961962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current application of algae derivatives for bioplastic production: A review.
    Dang BT; Bui XT; Tran DPH; Hao Ngo H; Nghiem LD; Hoang TK; Nguyen PT; Nguyen HH; Vo TK; Lin C; Yi Andrew Lin K; Varjani S
    Bioresour Technol; 2022 Mar; 347():126698. PubMed ID: 35026424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future.
    Rekhi P; Goswami M; Ramakrishna S; Debnath M
    Crit Rev Biotechnol; 2022 Aug; 42(5):668-692. PubMed ID: 34645360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms.
    Ciebiada M; Kubiak K; Daroch M
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33003478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.
    Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S
    Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy.
    Gomes Gradíssimo D; Pereira Xavier L; Valadares Santos A
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32971731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.