These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36503741)

  • 1. Arsenic release from microbial reduction of scorodite in the presence of electron shuttle in flooded soil.
    Fang Y; Chen M; Liu C; Dong L; Zhou J; Yi X; Ji D; Qiao J; Tong H
    J Environ Sci (China); 2023 Apr; 126():113-122. PubMed ID: 36503741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities.
    Yamamura S; Sudo T; Watanabe M; Tsuboi S; Soda S; Ike M; Amachi S
    J Hazard Mater; 2018 Jan; 342():571-578. PubMed ID: 28888188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy between indigenous bacteria and extracellular electron shuttles enhances transformation and mobilization of Fe(III)/As(V).
    Wang J; Xie Z; Wang Y; Yang Y; Chen M
    Sci Total Environ; 2021 Aug; 783():147002. PubMed ID: 33865142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humic Substances Facilitate Arsenic Reduction and Release in Flooded Paddy Soil.
    Qiao J; Li X; Li F; Liu T; Young LY; Huang W; Sun K; Tong H; Hu M
    Environ Sci Technol; 2019 May; 53(9):5034-5042. PubMed ID: 30942579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional Activity of Arsenic-Reducing Bacteria and Genes Regulated by Lactate and Biochar during Arsenic Transformation in Flooded Paddy Soil.
    Qiao JT; Li XM; Hu M; Li FB; Young LY; Sun WM; Huang W; Cui JH
    Environ Sci Technol; 2018 Jan; 52(1):61-70. PubMed ID: 29188998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment.
    Chen Z; Wang Y; Jiang X; Fu D; Xia D; Wang H; Dong G; Li Q
    Sci Total Environ; 2017 Jan; 574():1684-1694. PubMed ID: 27616712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of biochar/AQDS on As(III)-adsorbed ferrihydrite reduction and arsenic (As) and iron (Fe) transformation: Abiotic and biological conditions.
    An W; Wu C; Xue S; Liu Z; Liu M; Li W
    Chemosphere; 2022 Mar; 291(Pt 3):133126. PubMed ID: 34861266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of MnO
    Dong G; Han R; Pan Y; Zhang C; Liu Y; Wang H; Ji X; Dahlgren RA; Shang X; Chen Z; Zhang M
    J Hazard Mater; 2021 Jan; 401():123362. PubMed ID: 32629343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.
    Chen M; Tong H; Liu C; Chen D; Li F; Qiao J
    Chemosphere; 2016 Oct; 160():141-8. PubMed ID: 27372263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone.
    Yamamura S; Watanabe M; Kanzaki M; Soda S; Ike M
    Environ Sci Technol; 2008 Aug; 42(16):6154-9. PubMed ID: 18767680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.
    Ohtsuka T; Yamaguchi N; Makino T; Sakurai K; Kimura K; Kudo K; Homma E; Dong DT; Amachi S
    Environ Sci Technol; 2013 Jun; 47(12):6263-71. PubMed ID: 23668621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil.
    Wang X; Chen X; Yang J; Wang Z; Sun G
    J Environ Sci (China); 2009; 21(11):1562-8. PubMed ID: 20108691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils.
    Zou L; Jiang O; Zhang S; Duan G; Gustave W; An X; Tang X
    Environ Res; 2024 May; 249():118421. PubMed ID: 38325790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiosulfate driving bio-reduction mechanisms of scorodite in groundwater environment.
    Yang Y; Xie Z; Wang J; Chen M
    Chemosphere; 2023 Jan; 311(Pt 1):136956. PubMed ID: 36280119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization.
    Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Fe(II)-induced transformation of scorodite on arsenic solubility.
    Zhou J; Liu Y; Bu H; Liu P; Sun J; Wu F; Hua J; Liu C
    J Hazard Mater; 2022 May; 429():128274. PubMed ID: 35066222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales.
    Bai Y; Mellage A; Cirpka OA; Sun T; Angenent LT; Haderlein SB; Kappler A
    Environ Sci Technol; 2020 Apr; 54(7):4131-4139. PubMed ID: 32108470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.