These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36503741)

  • 21. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar.
    Qiao JT; Li XM; Li FB
    J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer.
    Glodowska M; Schneider M; Eiche E; Kontny A; Neumann T; Straub D; ; Kleindienst S; Kappler A
    Environ Pollut; 2021 Jul; 281():117012. PubMed ID: 33813189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways.
    Zhao Z; Meng Y; Yuan Q; Wang Y; Lin L; Liu W; Luan F
    Sci Total Environ; 2021 Apr; 763():144613. PubMed ID: 33383508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic effects of warming and humic substances on driving arsenic reduction and methanogenesis in flooded paddy soil.
    Hemmat-Jou MH; Gao R; Chen G; Liang Y; Li F; Fang L
    J Hazard Mater; 2024 Jun; 476():134947. PubMed ID: 38908180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of iron(III) bioavailability in pure iron oxide minerals and soils using anthraquinone-2,6-disulfonate oxidation.
    Hacherl EL; Kosson DS; Young LY; Cowan RM
    Environ Sci Technol; 2001 Dec; 35(24):4886-93. PubMed ID: 11775166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine by extracellular electron shuttling compounds.
    Kwon MJ; Finneran KT
    Appl Environ Microbiol; 2006 Sep; 72(9):5933-41. PubMed ID: 16957213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.
    Zhou S; Xu J; Yang G; Zhuang L
    FEMS Microbiol Ecol; 2014 Apr; 88(1):107-20. PubMed ID: 24372096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous fixation of dissolved arsenite from flooded soil by cooperating ferrihydrite with Geobacter sulfurreducens.
    Wu J; Huang S; Su J; Yi X; Wang Y
    Chemosphere; 2023 Mar; 318():137965. PubMed ID: 36706815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction.
    Zhou GW; Yang XR; Li H; Marshall CW; Zheng BX; Yan Y; Su JQ; Zhu YG
    Environ Sci Technol; 2016 Sep; 50(17):9298-307. PubMed ID: 27494694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of microbial iron reduction in arsenic metabolism from soil particle size fractions in simulated human gastrointestinal tract.
    Yin N; Chang X; Xiao P; Zhou Y; Liu X; Xiong S; Wang P; Cai X; Sun G; Cui Y; Hu Z
    Environ Int; 2023 Apr; 174():107911. PubMed ID: 37030286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.
    Muehe EM; Obst M; Hitchcock A; Tyliszczak T; Behrens S; Schröder C; Byrne JM; Michel FM; Krämer U; Kappler A
    Environ Sci Technol; 2013 Dec; 47(24):14099-109. PubMed ID: 24274146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment.
    Flynn TM; Antonopoulos DA; Skinner KA; Brulc JM; Johnston E; Boyanov MI; Kwon MJ; Kemner KM; O'Loughlin EJ
    PLoS One; 2021; 16(5):e0251883. PubMed ID: 34014980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the redox active analogue for humic substances.
    Dantas JM; Ferreira MR; Catarino T; Kokhan O; Pokkuluri PR; Salgueiro CA
    Biochim Biophys Acta Bioenerg; 2018 Aug; 1859(8):619-630. PubMed ID: 29777686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hematite-catalysed scorodite formation as a novel arsenic immobilisation strategy under ambient conditions.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Ito M; Hiroyoshi N
    Chemosphere; 2019 Oct; 233():946-953. PubMed ID: 31340422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition.
    Chen Z; Wang Y; Xia D; Jiang X; Fu D; Shen L; Wang H; Li QB
    J Hazard Mater; 2016 Jul; 311():20-9. PubMed ID: 26954472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H
    Ma X; Yuan Z; Lin J; Cui Y; Wang S; Pan Y; Chernikov R; Long Cheung LK; Deevsalar R; Jia Y
    Environ Sci Technol; 2024 Apr; 58(16):7176-7185. PubMed ID: 38606801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.