These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 36503823)
1. The synergistic effect of heterogeneous nucleation and stress-induced crystallization on supramolecular structure and performances of poly(lactic acid) melt-spun fibers. Guo S; Zhou Z; Yu S; Chen Z; Xiang H; Zhu M Int J Biol Macromol; 2023 Jan; 226():1579-1587. PubMed ID: 36503823 [TBL] [Abstract][Full Text] [Related]
2. Fiber-induced crystallization in polymer composites: A comparative study on poly(lactic acid) composites filled with basalt fiber and fiber powder. Pan H; Wang X; Jia S; Lu Z; Bian J; Yang H; Han L; Zhang H Int J Biol Macromol; 2021 Jul; 183():45-54. PubMed ID: 33892033 [TBL] [Abstract][Full Text] [Related]
3. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Jalali A; Romero-Diez S; Nofar M; Park CB Int J Biol Macromol; 2021 Dec; 193(Pt B):2210-2220. PubMed ID: 34798187 [TBL] [Abstract][Full Text] [Related]
4. Eco-friendly zinc-metal-organic framework as a nucleating agent for poly (lactic acid). El-Taweel SH; Hassan SS; Ismail KM Int J Biol Macromol; 2024 Jun; 271(Pt 2):132691. PubMed ID: 38810857 [TBL] [Abstract][Full Text] [Related]
5. Trace sorbitol-modified nano-silica: Towards nano-nucleation for poly(L-lactic acid). Yang B; Wan X Int J Biol Macromol; 2024 Aug; 274(Pt 1):133236. PubMed ID: 38897511 [TBL] [Abstract][Full Text] [Related]
6. Melt-spun microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers with enhanced toughness: Synergistic effect of heterogeneous nucleation, long-chain branching and drawing process. Xiang H; Chen Z; Zheng N; Zhang X; Zhu L; Zhou Z; Zhu M Int J Biol Macromol; 2019 Feb; 122():1136-1143. PubMed ID: 30219506 [TBL] [Abstract][Full Text] [Related]
7. The crystallization behavior of poly(lactic acid) with different types of nucleating agents. Feng Y; Ma P; Xu P; Wang R; Dong W; Chen M; Joziasse C Int J Biol Macromol; 2018 Jan; 106():955-962. PubMed ID: 28830776 [TBL] [Abstract][Full Text] [Related]
8. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing. Li Z; Zhao X; Ye L; Coates P; Caton-Rose F; Martyn M J Biomater Appl; 2014 Mar; 28(7):978-89. PubMed ID: 23733838 [TBL] [Abstract][Full Text] [Related]
9. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature. Nagarajan V; Zhang K; Misra M; Mohanty AK ACS Appl Mater Interfaces; 2015 Jun; 7(21):11203-14. PubMed ID: 25988675 [TBL] [Abstract][Full Text] [Related]
10. Enhancing interfacial interaction and crystallization in polylactic acid-based biocomposites via synergistic effect of wood fiber and self-assembly nucleating agent. Lv C; Luo S; Guo W; Chang L Int J Biol Macromol; 2023 Dec; 253(Pt 5):127265. PubMed ID: 37802453 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Shi X; Zhang G; Phuong TV; Lazzeri A Molecules; 2015 Jan; 20(1):1579-93. PubMed ID: 25608041 [TBL] [Abstract][Full Text] [Related]
12. Melt-spun bio-based PLA-co-PET copolyester fibers with tunable properties: Synergistic effects of chemical structure and drawing process. Zhang Z; Zhou J; Yu S; Wei L; Hu Z; Xiang H; Zhu M Int J Biol Macromol; 2023 Jan; 226():670-678. PubMed ID: 36521703 [TBL] [Abstract][Full Text] [Related]
13. Functionality of Cellulose Nanofiber as Bio-Based Nucleating Agent and Nano-Reinforcement Material to Enhance Crystallization and Mechanical Properties of Polylactic Acid Nanocomposite. Shazleen SS; Yasim-Anuar TAT; Ibrahim NA; Hassan MA; Ariffin H Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33513688 [TBL] [Abstract][Full Text] [Related]
14. A green strategy to regulate cellular structure and crystallization of poly(lactic acid) foams based on pre-isothermal cold crystallization and CO Li B; Zhao G; Wang G; Zhang L; Hou J; Gong J Int J Biol Macromol; 2019 May; 129():171-180. PubMed ID: 30735777 [TBL] [Abstract][Full Text] [Related]
15. Melt-spun polylactide/ethylene vinyl alcohol copolymer fiber. Liu Q; Yu D; Duan Z; Qin S; Wang A; Li L; Guo H; Deng B; Li H; Li D Int J Biol Macromol; 2024 Jul; 273(Pt 2):133136. PubMed ID: 38889826 [TBL] [Abstract][Full Text] [Related]
16. Morphology, Thermal, Mechanical Properties and Rheological Behavior of Biodegradable Poly(butylene succinate)/poly(lactic acid) In-Situ Submicrofibrillar Composites. Zhu Z; He H; Xue B; Zhan Z; Wang G; Chen M Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513576 [TBL] [Abstract][Full Text] [Related]
17. Enhanced crystallization, heat resistance and transparency of poly(lactic acid) with self-assembling bis-amide nucleator. Niu D; Shen T; Xu P; Yu M; Liu T; Yang W; Wang Z; Ma P Int J Biol Macromol; 2023 Apr; 234():123584. PubMed ID: 36796569 [TBL] [Abstract][Full Text] [Related]
18. Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. Wang G; Zhang D; Li B; Wan G; Zhao G; Zhang A Int J Biol Macromol; 2019 May; 129():448-459. PubMed ID: 30731162 [TBL] [Abstract][Full Text] [Related]
19. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. Zhao X; Liu J; Li J; Liang X; Zhou W; Peng S Int J Biol Macromol; 2022 Oct; 218():115-134. PubMed ID: 35868408 [TBL] [Abstract][Full Text] [Related]
20. Investigating the properties of poly (lactic acid)/exfoliated graphene based nanocomposites fabricated by versatile coating approach. Chakraborty G; Valapa RB; Pugazhenthi G; Katiyar V Int J Biol Macromol; 2018 Jul; 113():1080-1091. PubMed ID: 29534882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]