These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36504109)

  • 1. Effect of Ni atomic fraction on active species of graphene growth on Cu-Ni alloy catalysts: a density functional theory study.
    Yutomo EB; Noor FA; Winata T
    Phys Chem Chem Phys; 2022 Dec; 25(1):708-723. PubMed ID: 36504109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What are the active carbon species during graphene chemical vapor deposition growth?
    Shu H; Tao XM; Ding F
    Nanoscale; 2015 Feb; 7(5):1627-34. PubMed ID: 25553809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Growth of Graphene on Ni-Cu Alloy Thin Films at a Low Temperature and Its Carbon Diffusion Mechanism.
    Dong Y; Guo S; Mao H; Xu C; Xie Y; Cheng C; Mao X; Deng J; Pan G; Sun J
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31744237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a ReaxFF Reactive Force Field for the Pt-Ni Alloy Catalyst.
    Shin YK; Gai L; Raman S; van Duin ACT
    J Phys Chem A; 2016 Oct; 120(41):8044-8055. PubMed ID: 27670674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of Graphene Growth Alloy Catalysts Using High-Throughput Machine Learning.
    Li X; Shi JQ; Page AJ
    Nano Lett; 2023 Nov; 23(21):9796-9802. PubMed ID: 37890870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing descriptors for CO
    Ray K; Bhardwaj R; Singh B; Deo G
    Phys Chem Chem Phys; 2018 Jun; 20(23):15939-15950. PubMed ID: 29850682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial Cu-Ni Alloy Thin-Film Catalysts for Layer Number Control in Chemical Vapor-Deposited Graphene.
    Khanna SR; Stanford MG; Vlassiouk IV; Rack PD
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning adlayer-substrate interactions of graphene/h-BN heterostructures on Cu(111)-Ni and Ni(111)-Cu surface alloys.
    Huang J; Wang Q; Liu P; Chen GH; Yang Y
    RSC Adv; 2021 Jan; 11(4):1916-1927. PubMed ID: 35424168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil.
    Huang M; Biswal M; Park HJ; Jin S; Qu D; Hong S; Zhu Z; Qiu L; Luo D; Liu X; Yang Z; Liu Z; Huang Y; Lim H; Yoo WJ; Ding F; Wang Y; Lee Z; Ruoff RS
    ACS Nano; 2018 Jun; 12(6):6117-6127. PubMed ID: 29790339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils.
    Wu Y; Chou H; Ji H; Wu Q; Chen S; Jiang W; Hao Y; Kang J; Ren Y; Piner RD; Ruoff RS
    ACS Nano; 2012 Sep; 6(9):7731-8. PubMed ID: 22946844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO
    Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G
    Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple growth of graphene from a pre-dissolved carbon source.
    Fazi A; Nylander A; Zehri A; Sun J; Malmberg P; Ye L; Liu J; Fu Y
    Nanotechnology; 2020 Aug; 31(34):345601. PubMed ID: 32369782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bonding of C
    Hori M; Tsuji Y; Yoshizawa K
    Phys Chem Chem Phys; 2021 Jun; 23(25):14004-14015. PubMed ID: 34151334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic State and Active Structure of Ni-Co Catalyst in Carbon Nanofiber Growth Revealed by
    Fan H; Qiu L; Fedorov A; Willinger MG; Ding F; Huang X
    ACS Nano; 2021 Nov; 15(11):17895-17906. PubMed ID: 34730325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification processes during methane decomposition on Cu-promoted Ni-ZrO
    Wolfbeisser A; Klötzer B; Mayr L; Rameshan R; Zemlyanov D; Bernardi J; Föttinger K; Rupprechter G
    Catal Sci Technol; 2015 Feb; 5(2):967-978. PubMed ID: 25815163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Chainmail Shelled Dilute Ni─Cu Alloy for Selective and Robust Aqueous Phase Catalytic Hydrogenation.
    Yuan H; Hong M; Huang X; Qiu W; Dong F; Zhou Y; Chen Y; Gao J; Yang S
    Adv Sci (Weinh); 2024 Apr; 11(13):e2304349. PubMed ID: 38243637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cerium doping on Cu-Ni/activated carbon low-temperature CO-SCR denitration catalysts.
    Wang D; Huang B; Shi Z; Long H; Li L; Yang Z; Dai M
    RSC Adv; 2021 May; 11(30):18458-18467. PubMed ID: 35480934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.