These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36504182)

  • 1. Superlattice-based Plasmonic Catalysis: Concentrating Light at the Nanoscale to Drive Efficient Nitrogen-to-Ammonia Fixation at Ambient Conditions.
    Boong SK; Chong C; Lee JK; Ang ZZ; Li H; Lee HK
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216562. PubMed ID: 36504182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
    Nazemi M; El-Sayed MA
    Acc Chem Res; 2021 Dec; 54(23):4294-4304. PubMed ID: 34719918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices.
    Lee YH; Shi W; Lee HK; Jiang R; Phang IY; Cui Y; Isa L; Yang Y; Wang J; Li S; Ling XY
    Nat Commun; 2015 Apr; 6():6990. PubMed ID: 25923409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Plasmonic Photocatalysis Based on TiO
    Kumar A; Choudhary P; Kumar A; Camargo PHC; Krishnan V
    Small; 2022 Jan; 18(1):e2101638. PubMed ID: 34396695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic ammonia production enhanced by a plasmonic near-field and hot electrons originating from aluminium nanostructures.
    Thangamuthu M; Santschi C; Martin OJF
    Faraday Discuss; 2019 May; 214(0):399-415. PubMed ID: 30815653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions.
    Zhao S; Lu X; Wang L; Gale J; Amal R
    Adv Mater; 2019 Mar; 31(13):e1805367. PubMed ID: 30648293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation.
    Chen LW; Hao YC; Guo Y; Zhang Q; Li J; Gao WY; Ren L; Su X; Hu L; Zhang N; Li S; Feng X; Gu L; Zhang YW; Yin AX; Wang B
    J Am Chem Soc; 2021 Apr; 143(15):5727-5736. PubMed ID: 33847495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets.
    Zhang L; Ding LX; Chen GF; Yang X; Wang H
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2612-2616. PubMed ID: 30560583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous Gold Embedded ZIF Composite for Enhanced Electrochemical Nitrogen Fixation.
    Yang Y; Wang SQ; Wen H; Ye T; Chen J; Li CP; Du M
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15362-15366. PubMed ID: 31441563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.
    Li J; Li H; Zhan G; Zhang L
    Acc Chem Res; 2017 Jan; 50(1):112-121. PubMed ID: 28009157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms.
    Zhang H; Wang R; Sikdar D; Wu L; Sun J; Gu N; Chen Y
    ACS Sens; 2022 Feb; 7(2):622-631. PubMed ID: 35157439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Non-metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions.
    Zhang L; Chen GF; Ding LX; Wang H
    Chemistry; 2019 Sep; 25(54):12464-12485. PubMed ID: 31120594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma.
    Liyanage T; Masterson AN; Hati S; Ren G; Manicke NE; Rusyniak DE; Sardar R
    Analyst; 2020 Nov; 145(23):7662-7672. PubMed ID: 32969415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-Standing Nanoarrays with Energetic Electrons and Active Sites for Efficient Plasmon-Driven Ammonia Synthesis.
    Jiang W; Zhang H; An Y; Mao Y; Wang Z; Liu Y; Wang P; Zheng Z; Wei W; Dai Y; Cheng H; Huang B
    Small; 2022 Jun; 18(24):e2201269. PubMed ID: 35567335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Schottky-Barrier-Free Plasmonic Semiconductor Photocatalyst for Nitrogen Fixation in a "One-Stone-Two-Birds" Manner.
    Bai H; Lam SH; Yang J; Cheng X; Li S; Jiang R; Shao L; Wang J
    Adv Mater; 2022 Jan; 34(2):e2104226. PubMed ID: 34655458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-Doped Fe
    Chen X; Yin H; Yang X; Zhang W; Xiao D; Lu Z; Zhang Y; Zhang P
    Inorg Chem; 2022 Dec; 61(49):20123-20132. PubMed ID: 36441161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superlattice in a Ru Superstructure for Enhancing Hydrogen Evolution.
    Zhang J; Mao X; Wang S; Liang L; Cao M; Wang L; Li G; Xu Y; Huang X
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202116867. PubMed ID: 35020266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Sabatier Optimal for Ammonia Synthesis with Paramagnetic Phase of Ferromagnetic Transition Metal Catalysts.
    Xu G; Cai C; Wang T
    J Am Chem Soc; 2022 Dec; 144(50):23089-23095. PubMed ID: 36472493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.