BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36504273)

  • 1. Viral modulation of lipid rafts and their potential as putative antiviral targets.
    Gee YJ; Sea YL; Lal SK
    Rev Med Virol; 2023 Mar; 33(2):e2413. PubMed ID: 36504273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol-rich lipid rafts both in cellular and viral membrane are critical for caprine parainfluenza virus type3 entry and infection in host cells.
    Li W; Yang L; Mao L; Liu M; Li J; Zhang W; Sun M
    Vet Microbiol; 2020 Sep; 248():108794. PubMed ID: 32827922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection.
    Li L; Yu L; Hou X
    Res Vet Sci; 2017 Oct; 114():341-347. PubMed ID: 28654867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical role of lipid rafts in virus entry and activation of phosphoinositide 3' kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells.
    Das S; Chakraborty S; Basu A
    J Neurochem; 2010 Oct; 115(2):537-49. PubMed ID: 20722967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the lipid rafts in the life cycle of canine coronavirus.
    Pratelli A; Colao V
    J Gen Virol; 2015 Feb; 96(Pt 2):331-337. PubMed ID: 25381058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl-β-cyclodextrin inhibits EV-D68 virus entry by perturbing the accumulation of virus particles and ICAM-5 in lipid rafts.
    Jiang Y; Liu S; Shen S; Guo H; Huang H; Wei W
    Antiviral Res; 2020 Apr; 176():104752. PubMed ID: 32101770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid rafts and HIV-1: from viral entry to assembly of progeny virions.
    Campbell SM; Crowe SM; Mak J
    J Clin Virol; 2001 Oct; 22(3):217-27. PubMed ID: 11564586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of cytokine signaling in human retinal endothelial cells through modification of caveolae/lipid rafts by docosahexaenoic acid.
    Chen W; Jump DB; Esselman WJ; Busik JV
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):18-26. PubMed ID: 17197511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol-Rich Lipid Rafts in the Cellular Membrane Play an Essential Role in Avian Reovirus Replication.
    Wang Y; Zhang Y; Zhang C; Hu M; Yan Q; Zhao H; Zhang X; Wu Y
    Front Microbiol; 2020; 11():597794. PubMed ID: 33224131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells.
    García Cordero J; León Juárez M; González-Y-Merchand JA; Cedillo Barrón L; Gutiérrez Castañeda B
    PLoS One; 2014; 9(3):e90704. PubMed ID: 24643062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus entry, assembly, budding, and membrane rafts.
    Chazal N; Gerlier D
    Microbiol Mol Biol Rev; 2003 Jun; 67(2):226-37, table of contents. PubMed ID: 12794191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method for effective and safe removal of membrane cholesterol from lipid rafts in vascular endothelial cells: implications in oxidant-mediated lipid signaling.
    Kline MA; O'Connor Butler ES; Hinzey A; Sliman S; Kotha SR; Marsh CB; Uppu RM; Parinandi NL
    Methods Mol Biol; 2010; 610():201-11. PubMed ID: 20013180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain.
    Guo H; Huang M; Yuan Q; Wei Y; Gao Y; Mao L; Gu L; Tan YW; Zhong Y; Liu D; Sun S
    PLoS One; 2017; 12(1):e0170123. PubMed ID: 28081264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes.
    Chamberlain LH; Gould GW
    J Biol Chem; 2002 Dec; 277(51):49750-4. PubMed ID: 12376543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts.
    Chung CS; Huang CY; Chang W
    J Virol; 2005 Feb; 79(3):1623-34. PubMed ID: 15650188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases.
    Fantini J; Garmy N; Mahfoud R; Yahi N
    Expert Rev Mol Med; 2002 Dec; 4(27):1-22. PubMed ID: 14987385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of ileal bile acid transporter (ASBT) activity by depletion of plasma membrane cholesterol: association with lipid rafts.
    Annaba F; Sarwar Z; Kumar P; Saksena S; Turner JR; Dudeja PK; Gill RK; Alrefai WA
    Am J Physiol Gastrointest Liver Physiol; 2008 Feb; 294(2):G489-97. PubMed ID: 18063707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.