These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36504344)

  • 1. Advances in Low-Temperature Dual-Ion Batteries.
    Yu D; Li K; Ma G; Ru F; Zhang X; Luo W; Hu P; Chen D; Wang H
    ChemSusChem; 2023 Feb; 16(4):e202201595. PubMed ID: 36504344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advancements in Devising Computational Strategies for Dual-Ion Batteries.
    Das S; Manna SS; Pathak B
    ChemSusChem; 2023 Feb; 16(4):e202201405. PubMed ID: 36044685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application-Based Prospects for Dual-Ion Batteries.
    Holoubek J; Chen Z; Liu P
    ChemSusChem; 2023 Feb; 16(4):e202201245. PubMed ID: 35998216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Anode Materials for Dual-Ion Batteries.
    Wu H; Luo S; Wang H; Li L; Fang Y; Zhang F; Gao X; Zhang Z; Yuan W
    Nanomicro Lett; 2024 Jul; 16(1):252. PubMed ID: 39046572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance.
    Mei P; Zhang Y; Zhang W
    Nanoscale; 2023 Jan; 15(3):987-997. PubMed ID: 36541266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Functional Electrolytes Towards Commercial Dual-Ion Batteries.
    Jiang H; Chen Z; Yang Y; Fan C; Zhao J; Cui G
    ChemSusChem; 2023 Feb; 16(4):e202201561. PubMed ID: 36098496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects.
    Sun S; Wang K; Hong Z; Zhi M; Zhang K; Xu J
    Nanomicro Lett; 2023 Nov; 16(1):35. PubMed ID: 38019309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Advanced Lithium-based Batteries for Low-temperature Conditions.
    Gupta A; Manthiram A
    Adv Energy Mater; 2020 Oct; 10(38):. PubMed ID: 34158810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium-Ion Batteries under Low-Temperature Environment: Challenges and Prospects.
    Luo H; Wang Y; Feng YH; Fan XY; Han X; Wang PF
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies towards Low-Cost Dual-Ion Batteries with High Performance.
    Zhou X; Liu Q; Jiang C; Ji B; Ji X; Tang Y; Cheng HM
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):3802-3832. PubMed ID: 30865353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spreading the Landscape of Dual Ion Batteries: from Electrode to Electrolyte.
    Liu M; Zhang W; Zheng W
    ChemSusChem; 2023 Feb; 16(4):e202201375. PubMed ID: 35997662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature.
    Chen J; Peng Y; Yin Y; Fang Z; Cao Y; Wang Y; Dong X; Xia Y
    Angew Chem Int Ed Engl; 2021 Oct; 60(44):23858-23862. PubMed ID: 34463020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior.
    Dong X; Yang Y; Wang B; Cao Y; Wang N; Li P; Wang Y; Xia Y
    Adv Sci (Weinh); 2020 Jul; 7(14):2000196. PubMed ID: 32714749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry-Driven Interphase Doubly Protects Graphite Cathodes for Ultralong Life and Fast Charge of Dual-Ion Batteries.
    Zhang K; Li D; Shao J; Jiang Y; Lv L; Shi Q; Qu Q; Zheng H
    ChemSusChem; 2023 Jul; 16(13):e202300324. PubMed ID: 36922346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Interfacial Chemistry Enabling High-Power Dual-Ion Batteries at Low Temperatures.
    Lang J; Liu Y; Liu Q; Yang J; Yang X; Tang Y
    Small; 2024 Jul; ():e2401200. PubMed ID: 38984748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical Review on Low-Temperature Li-Ion/Metal Batteries.
    Zhang N; Deng T; Zhang S; Wang C; Chen L; Wang C; Fan X
    Adv Mater; 2022 Apr; 34(15):e2107899. PubMed ID: 34855260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunities and Limitations of Ionic Liquid- and Organic Carbonate Solvent-Based Electrolytes for Mg-Ion-Based Dual-Ion Batteries.
    Küpers V; Dohmann JF; Bieker P; Winter M; Placke T; Kolek M
    ChemSusChem; 2021 Oct; 14(20):4480-4498. PubMed ID: 34339580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual-Ion Battery.
    Xiang L; Ou X; Wang X; Zhou Z; Li X; Tang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17924-17930. PubMed ID: 32558980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Electrode Materials for Dual-Ion Batteries.
    Tong Y; Wei Y; Song A; Ma Y; Yang J
    ChemSusChem; 2024 Apr; 17(7):e202301468. PubMed ID: 38116879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.