These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 36504408)
1. Multiyear methane and nitrous oxide emissions in different irrigation management under long-term continuous rice rotation in Arkansas. Karki S; Adviento-Borbe MAA; Runkle BRK; Moreno-García B; Anders M; Reba ML J Environ Qual; 2023; 52(3):558-572. PubMed ID: 36504408 [TBL] [Abstract][Full Text] [Related]
2. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. Islam SMM; Gaihre YK; Islam MR; Ahmed MN; Akter M; Singh U; Sander BO J Environ Manage; 2022 Apr; 307():114520. PubMed ID: 35066193 [TBL] [Abstract][Full Text] [Related]
3. Zeolite application increases grain yield and mitigates greenhouse gas emissions under alternate wetting and drying rice system. Sha Y; Chi D; Chen T; Wang S; Zhao Q; Li Y; Sun Y; Chen J; Lærke PE Sci Total Environ; 2022 Sep; 838(Pt 4):156067. PubMed ID: 35605853 [TBL] [Abstract][Full Text] [Related]
4. Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils. Win EP; Win KK; Bellingrath-Kimura SD; Oo AZ PLoS One; 2021; 16(6):e0253755. PubMed ID: 34191848 [TBL] [Abstract][Full Text] [Related]
5. A combination of organic fertilizers partially substitution with alternate wet and dry irrigation could further reduce greenhouse gases emission in rice field. Liao B; Cai T; Wu X; Luo Y; Liao P; Zhang B; Zhang Y; Wei G; Hu R; Luo Y; Cui Y J Environ Manage; 2023 Oct; 344():118372. PubMed ID: 37343474 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the GHG mitigation-potential of alternate wetting and drying in rice through life cycle assessment. Fertitta-Roberts C; Oikawa PY; Darrel Jenerette G Sci Total Environ; 2019 Feb; 653():1343-1353. PubMed ID: 30759574 [TBL] [Abstract][Full Text] [Related]
7. Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions. Fang K; Yi X; Dai W; Gao H; Cao L Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31159212 [TBL] [Abstract][Full Text] [Related]
8. [Effects of Water and Fertilization Management on CH Li JQ; Shao XH; Gou GL; Deng YX; Tan SM; Xu WX; Yang Q; Liu WJ; Wu YZ; Meng L; Tang SR Huan Jing Ke Xue; 2021 Jul; 42(7):3458-3471. PubMed ID: 34212673 [TBL] [Abstract][Full Text] [Related]
9. Effects of water management on greenhouse gas emissions from farmers' rice fields in Bangladesh. Islam SMM; Gaihre YK; Islam MR; Akter M; Al Mahmud A; Singh U; Sander BO Sci Total Environ; 2020 Sep; 734():139382. PubMed ID: 32460078 [TBL] [Abstract][Full Text] [Related]
10. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH Liao B; Wu X; Yu Y; Luo S; Hu R; Lu G Sci Total Environ; 2020 Jan; 698():134212. PubMed ID: 31783470 [TBL] [Abstract][Full Text] [Related]
11. [Effect of Different Fertilization Treatments on Methane and Nitrous Oxide Emissions from Rice-Vegetable Rotation in a Tropical Region, China]. Shao XH; Tang SR; Meng L; Wu YZ; Li JQ; Gou GL Huan Jing Ke Xue; 2022 Nov; 43(11):5149-5158. PubMed ID: 36437087 [TBL] [Abstract][Full Text] [Related]
12. Integrated effects of microbial decomposing inoculant on greenhouse gas emissions, grain yield and economic profit from paddy fields under different water regimes. Hao M; Guo LJ; Du XZ; Wang HL; Sheng F; Li CF Sci Total Environ; 2022 Jan; 805():150295. PubMed ID: 34536874 [TBL] [Abstract][Full Text] [Related]
13. [Effects of Nitrogen Fertilizer Management on CH Zheng MQ; Liu J; Jiang PK; Wu JS; Li YF; Li SH Huan Jing Ke Xue; 2022 Apr; 43(4):2171-2181. PubMed ID: 35393841 [TBL] [Abstract][Full Text] [Related]
14. Increased rice yield and reduced greenhouse gas emissions through alternate wetting and drying in a triple-cropped rice field in the Mekong Delta. Arai H Sci Total Environ; 2022 Oct; 842():156958. PubMed ID: 35760167 [TBL] [Abstract][Full Text] [Related]
15. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Linquist BA; Anders MM; Adviento-Borbe MA; Chaney RL; Nalley LL; da Rosa EF; van Kessel C Glob Chang Biol; 2015 Jan; 21(1):407-17. PubMed ID: 25099317 [TBL] [Abstract][Full Text] [Related]
16. Extended methane mitigation capacity of a mid-season drainage beyond the rice growing season: a case in Spain. Martínez-Eixarch M; Beltrán-Miralles M; Guéry S; Alcaraz C Environ Monit Assess; 2022 Aug; 194(9):648. PubMed ID: 35931859 [TBL] [Abstract][Full Text] [Related]
17. Sensing and Analysis of Greenhouse Gas Emissions from Rice Fields to the Near Field Atmosphere. Rajasekar P; Selvi JAV Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684762 [TBL] [Abstract][Full Text] [Related]
18. [Effects of Coconut Chaff Biochar Amendment on Methane and Nitrous Oxide Emissions from Paddy Fields in Hot Areas]. Wang ZJ; Wang HH; Li JQ; Wu YZ; Fu PJ; Meng L; Tang SR Huan Jing Ke Xue; 2021 Aug; 42(8):3931-3942. PubMed ID: 34309280 [TBL] [Abstract][Full Text] [Related]
19. Methane Emission Reductions from the Alternate Wetting and Drying of Rice Fields Detected Using the Eddy Covariance Method. Runkle BRK; Suvočarev K; Reba ML; Reavis CW; Smith SF; Chiu YL; Fong B Environ Sci Technol; 2019 Jan; 53(2):671-681. PubMed ID: 30566833 [TBL] [Abstract][Full Text] [Related]
20. Agro-technologies for greenhouse gases mitigation in flooded rice fields for promoting climate smart agriculture. Rajbonshi MP; Mitra S; Bhattacharyya P Environ Pollut; 2024 Jun; 350():123973. PubMed ID: 38636841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]