These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 36504420)
1. Advances in Selective Electrocatalytic Hydrogenation of Alkynes to Alkenes. Liu Z; Zhang L; Ren Z; Zhang J Chemistry; 2023 Mar; 29(15):e202202979. PubMed ID: 36504420 [TBL] [Abstract][Full Text] [Related]
2. Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source. Liu C; Wu Y; Zhao B; Zhang B Acc Chem Res; 2023 Jul; 56(13):1872-1883. PubMed ID: 37316974 [TBL] [Abstract][Full Text] [Related]
3. Alloying and confinement effects on hierarchically nanoporous CuAu for efficient electrocatalytic semi-hydrogenation of terminal alkynes. Meng L; Kao CW; Wang Z; Ma J; Huang P; Zhao N; Zheng X; Peng M; Lu YR; Tan Y Nat Commun; 2024 Jul; 15(1):5999. PubMed ID: 39013955 [TBL] [Abstract][Full Text] [Related]
4. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Wu Y; Liu C; Wang C; Yu Y; Shi Y; Zhang B Nat Commun; 2021 Jun; 12(1):3881. PubMed ID: 34162851 [TBL] [Abstract][Full Text] [Related]
5. Pairing d-Band Center of Metal Sites with π-Orbital of Alkynes for Efficient Electrocatalytic Alkyne Semi-Hydrogenation. Li J; Guo Y; Chang S; Lin J; Wang Y; Liu Z; Wu Y; Zhang J Small; 2023 Feb; 19(5):e2205845. PubMed ID: 36446635 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. Zheng M; Zhang J; Wang P; Jin H; Zheng Y; Qiao SZ Adv Mater; 2024 Apr; 36(14):e2307913. PubMed ID: 37756435 [TBL] [Abstract][Full Text] [Related]
7. σ-Alkynyl Adsorption Enables Electrocatalytic Semihydrogenation of Terminal Alkynes with Easy-Reducible/Passivated Groups over Amorphous PdS Li H; Gao Y; Wu Y; Liu C; Cheng C; Chen F; Shi Y; Zhang B J Am Chem Soc; 2022 Oct; 144(42):19456-19465. PubMed ID: 36197038 [TBL] [Abstract][Full Text] [Related]
9. Membrane-Free Selective Semi-Hydrogenation of Alkynes Over an In Situ Formed Copper Nanoparticle Electrode. Guo P; Xu Y; Wu H; Zhang L Small; 2024 Aug; 20(33):e2401107. PubMed ID: 38530045 [TBL] [Abstract][Full Text] [Related]
10. Nickel-Catalyzed Stereodivergent Synthesis of E- and Z-Alkenes by Hydrogenation of Alkynes. Murugesan K; Bheeter CB; Linnebank PR; Spannenberg A; Reek JNH; Jagadeesh RV; Beller M ChemSusChem; 2019 Jul; 12(14):3363-3369. PubMed ID: 30977957 [TBL] [Abstract][Full Text] [Related]
11. An alkene-promoted borane-catalyzed highly stereoselective hydrogenation of alkynes to give Z- and E-alkenes. Liu Y; Hu L; Chen H; Du H Chemistry; 2015 Feb; 21(8):3495-501. PubMed ID: 25589473 [TBL] [Abstract][Full Text] [Related]
12. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Gao Y; Yang R; Wang C; Liu C; Wu Y; Li H; Zhang B Sci Adv; 2022 Feb; 8(8):eabm9477. PubMed ID: 35196082 [TBL] [Abstract][Full Text] [Related]
13. Embedding Single Pd Atoms on NiGa Intermetallic Surfaces for Efficient and Selective Alkyne Hydrogenation. Ge X; Jing Y; Fei N; Yan K; Liang Y; Cao Y; Zhang J; Qian G; Li L; Jiang H; Zhou X; Yuan W; Duan X Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202410979. PubMed ID: 38967363 [TBL] [Abstract][Full Text] [Related]
14. Selective semihydrogenation of alkynes on shape-controlled palladium nanocrystals. Chung J; Kim C; Jeong H; Yu T; Binh DH; Jang J; Lee J; Kim BM; Lim B Chem Asian J; 2013 May; 8(5):919-25. PubMed ID: 23468235 [TBL] [Abstract][Full Text] [Related]
15. Enhancing Electrocatalytic Semihydrogenation of Alkynes via Weakening Alkene Adsorption over Electron-Depleted Cu Nanowires. Luo D; Xie Z; Chen S; Yang T; Guo Y; Liu Y; Zhu Z; Gan L; Liu L; Huang J ACS Nanosci Au; 2024 Oct; 4(5):349-359. PubMed ID: 39430377 [TBL] [Abstract][Full Text] [Related]
16. Enabling Semihydrogenation of Alkynes to Alkenes by Using a Calcium Palladium Complex Hydride. Guo Q; Chen R; Guo J; Qin C; Xiong Z; Yan H; Gao W; Pei Q; Wu A; Chen P J Am Chem Soc; 2021 Dec; 143(49):20891-20897. PubMed ID: 34854674 [TBL] [Abstract][Full Text] [Related]
17. Ligand-Controlled Cobalt-Catalyzed Transfer Hydrogenation of Alkynes: Stereodivergent Synthesis of Z- and E-Alkenes. Fu S; Chen NY; Liu X; Shao Z; Luo SP; Liu Q J Am Chem Soc; 2016 Jul; 138(27):8588-94. PubMed ID: 27322175 [TBL] [Abstract][Full Text] [Related]
18. Electrocatalytic Semihydrogenation of Terminal Alkynes Using Ligand-Based Transfer of Protons and Electrons. Czaikowski ME; Anferov SW; Tascher AP; Anderson JS J Am Chem Soc; 2024 Jan; 146(1):476-486. PubMed ID: 38163759 [TBL] [Abstract][Full Text] [Related]
19. Soluble iron nanoparticles as cheap and environmentally benign alkene and alkyne hydrogenation catalysts. Phua PH; Lefort L; Boogers JA; Tristany M; de Vries JG Chem Commun (Camb); 2009 Jul; (25):3747-9. PubMed ID: 19557269 [TBL] [Abstract][Full Text] [Related]
20. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Zhu YP; Guo C; Zheng Y; Qiao SZ Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]