These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36504420)

  • 21. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond.
    Wang Y; Huang Z; Liu G; Huang Z
    Acc Chem Res; 2022 Aug; 55(15):2148-2161. PubMed ID: 35852837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory.
    López N; Vargas-Fuentes C
    Chem Commun (Camb); 2012 Feb; 48(10):1379-91. PubMed ID: 22114762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled Selectivity through Reversible Inhibition of the Catalyst: Stereodivergent Semihydrogenation of Alkynes.
    Luo J; Liang Y; Montag M; Diskin-Posner Y; Avram L; Milstein D
    J Am Chem Soc; 2022 Jul; 144(29):13266-13275. PubMed ID: 35839274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fine-Tuning Pore Dimension in Hybrid Ultramicroporous Materials Boosting Simultaneous Trapping of Trace Alkynes from Alkenes.
    Zhang Z; Ding Q; Cui J; Cui X; Xing H
    Small; 2020 Dec; 16(49):e2005360. PubMed ID: 33201579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins.
    Vilé G; Bridier B; Wichert J; Pérez-Ramírez J
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8620-3. PubMed ID: 22811402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Migratory Hydrogenation of Terminal Alkynes by Base/Cobalt Relay Catalysis.
    Liu X; Liu B; Liu Q
    Angew Chem Int Ed Engl; 2020 Apr; 59(17):6750-6755. PubMed ID: 32118345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stereoselective Alkyne Hydrogenation by using a Simple Iron Catalyst.
    Gregori BJ; Schwarzhuber F; Pöllath S; Zweck J; Fritsch L; Schoch R; Bauer M; Jacobi von Wangelin A
    ChemSusChem; 2019 Aug; 12(16):3864-3870. PubMed ID: 31265757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supported Pt Nanoparticles on Mesoporous Titania for Selective Hydrogenation of Phenylacetylene.
    Hu M; Jin L; Dang Y; Suib SL; He J; Liu B
    Front Chem; 2020; 8():581512. PubMed ID: 33330371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly selective electrochemical hydrogenation of alkynes: Rapid construction of mechanochromic materials.
    Li B; Ge H
    Sci Adv; 2019 May; 5(5):eaaw2774. PubMed ID: 31139749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient and selective catalysis for hydrogenation and hydrosilation of alkenes and alkynes with PNP complexes of scandium and yttrium.
    Levine DS; Tilley TD; Andersen RA
    Chem Commun (Camb); 2017 Oct; 53(87):11881-11884. PubMed ID: 29043320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen Spillover Phenomenon at the Interface of Metal-Supported Electrocatalysts for Hydrogen Evolution.
    Li J; Ma Y; Ho JC; Qu Y
    Acc Chem Res; 2024 Mar; 57(6):895-904. PubMed ID: 38427852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-noble Nickel-Modified Covalent Organic Framework for Partial Hydrogenation of Aromatic Terminal Alkynes.
    Wang N; Liu J; Zhang M; Wang C; Li X; Ma L
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60135-60143. PubMed ID: 34904429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. E-Selective Semi-Hydrogenation of Alkynes by Heterobimetallic Catalysis.
    Karunananda MK; Mankad NP
    J Am Chem Soc; 2015 Nov; 137(46):14598-601. PubMed ID: 26550848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic Modification of Palladium Catalysts with Chain Alkylamines for the Selective Hydrogenation of Alkynes.
    Luo Q; Wang Z; Chen Y; Mao S; Wu K; Zhang K; Li Q; Lv G; Huang G; Li H; Wang Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31775-31784. PubMed ID: 34227385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-Assisted Semi-Hydrogenation of 1,3-Butadiene with Water.
    Wei QC; Chen Y; Wang Z; Yu DZ; Wang WH; Li JQ; Chen LH; Li Y; Su BL
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202210573. PubMed ID: 35909225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts.
    Asefa T
    Acc Chem Res; 2016 Sep; 49(9):1873-83. PubMed ID: 27599362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper-Catalyzed Diboron-Mediated
    Zeng Y; Zhang H; Ma D; Wang G
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364041
    [No Abstract]   [Full Text] [Related]  

  • 38. Selective Hydrogenation of Aldehydes under Syngas Using CeO
    Shirayama K; Jin X; Nozaki K
    J Am Chem Soc; 2024 May; 146(20):14086-14094. PubMed ID: 38634713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active Site Engineering in Porous Electrocatalysts.
    Chen H; Liang X; Liu Y; Ai X; Asefa T; Zou X
    Adv Mater; 2020 Nov; 32(44):e2002435. PubMed ID: 32666550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrafine PdCo bimetallic nanoclusters confined in N-doped porous carbon for the efficient semi-hydrogenation of alkynes.
    Zhan X; Zhu H; Ma H; Hu X; Xie Y; Guo D; Chen M; Ma P; Sun L; Wang WD; Dong Z
    Dalton Trans; 2022 Nov; 51(42):16361-16370. PubMed ID: 36250296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.