These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36504492)
1. On the dynamics and control of a squirrel locking its head/eyes toward a fixed spot for safe landing while its body is tumbling in air. Ma T; Zhang T; Ma O Front Robot AI; 2022; 9():1030601. PubMed ID: 36504492 [TBL] [Abstract][Full Text] [Related]
2. Inertial Tail Effects during Righting of Squirrels in Unexpected Falls: From Behavior to Robotics. Fukushima T; Siddall R; Schwab F; Toussaint SLD; Byrnes G; Nyakatura JA; Jusufi A Integr Comp Biol; 2021 Sep; 61(2):589-602. PubMed ID: 33930150 [TBL] [Abstract][Full Text] [Related]
3. Air-to-land transitions: from wingless animals and plant seeds to shuttlecocks and bio-inspired robots. Ortega-Jimenez VM; Jusufi A; Brown CE; Zeng Y; Kumar S; Siddall R; Kim B; Challita EJ; Pavlik Z; Priess M; Umhofer T; Koh JS; Socha JJ; Dudley R; Bhamla MS Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37552773 [TBL] [Abstract][Full Text] [Related]
4. Bio-inspired neuromuscular reflex based hopping controller for a segmented robotic leg. Zhao G; Szymanski F; Seyfarth A Bioinspir Biomim; 2020 Feb; 15(2):026007. PubMed ID: 31968325 [TBL] [Abstract][Full Text] [Related]
5. Jump stabilization and landing control by wing-spreading of a locust-inspired jumper. Beck A; Zaitsev V; Hanan UB; Kosa G; Ayali A; Weiss A Bioinspir Biomim; 2017 Oct; 12(6):066006. PubMed ID: 28914235 [TBL] [Abstract][Full Text] [Related]
6. Effects of head and body restraint on experimental motion-induced sickness in squirrel monkeys. Wilpizeski CR; Lowry LD; Contrucci RB; Green SJ; Goldman WS Aviat Space Environ Med; 1985 Nov; 56(11):1070-3. PubMed ID: 4074259 [TBL] [Abstract][Full Text] [Related]
7. High-resolution prediction of American red squirrel in Interior Alaska: a role model for conservation using open access data, machine learning, GIS and LIDAR. Robold RB; Huettmann F PeerJ; 2021; 9():e11830. PubMed ID: 34611502 [TBL] [Abstract][Full Text] [Related]
8. Canal-otolith interactions in the squirrel monkey vestibulo-ocular reflex and the influence of fixation distance. Telford L; Seidman SH; Paige GD Exp Brain Res; 1998 Jan; 118(1):115-25. PubMed ID: 9547069 [TBL] [Abstract][Full Text] [Related]
9. [Squirrel monkey--an ideal primate (correction of prmate) model of space physiology]. Matsunami K Biol Sci Space; 1997 Jun; 11(2):87-111. PubMed ID: 11540548 [TBL] [Abstract][Full Text] [Related]
10. Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations. Paige GD; Tomko DL J Neurophysiol; 1991 May; 65(5):1183-96. PubMed ID: 1869912 [TBL] [Abstract][Full Text] [Related]
11. [Role of contact with a support in the tumbling response of white rats during free fall]. Aĭzikov GS Biull Eksp Biol Med; 1980 Dec; 90(12):648-52. PubMed ID: 7470594 [TBL] [Abstract][Full Text] [Related]
12. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy. Xie J; Peng X; Wang H; Niu W; Zheng X Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747 [TBL] [Abstract][Full Text] [Related]
13. Motion sickness susceptibility during rotation at 30 rpm in free-fall parabolic flight. Graybiel A Acta Astronaut; 1979 Nov; 6(11):1481-7. PubMed ID: 11831246 [TBL] [Abstract][Full Text] [Related]
14. A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets. Albee K; Oestreich C; Specht C; Terán Espinoza A; Todd J; Hokaj I; Lampariello R; Linares R Front Robot AI; 2021; 8():641338. PubMed ID: 34604314 [TBL] [Abstract][Full Text] [Related]
16. MOSAIC for multiple-reward environments. Sugimoto N; Haruno M; Doya K; Kawato M Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558 [TBL] [Abstract][Full Text] [Related]
17. Pigeons ( Ros IG; Biewener AA Front Neurosci; 2017; 11():655. PubMed ID: 29249929 [TBL] [Abstract][Full Text] [Related]
18. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots. Jusufi A; Kawano DT; Libby T; Full RJ Bioinspir Biomim; 2010 Dec; 5(4):045001. PubMed ID: 21098954 [TBL] [Abstract][Full Text] [Related]
19. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers. Rajendran SK; Zhang F Front Robot AI; 2021; 8():809427. PubMed ID: 35309723 [TBL] [Abstract][Full Text] [Related]