These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36504733)
1. Optimization of metamaterials and metamaterial-microcavity based on deep neural networks. Lan G; Wang Y; Ou JY Nanoscale Adv; 2022 Nov; 4(23):5137-5143. PubMed ID: 36504733 [TBL] [Abstract][Full Text] [Related]
2. Prediction Network of Metamaterial with Split Ring Resonator Based on Deep Learning. Hou Z; Tang T; Shen J; Li C; Li F Nanoscale Res Lett; 2020 Apr; 15(1):83. PubMed ID: 32296958 [TBL] [Abstract][Full Text] [Related]
3. Metamaterial Reverse Multiple Prediction Method Based on Deep Learning. Hou Z; Zhang P; Ge M; Li J; Tang T; Shen J; Li C Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685111 [TBL] [Abstract][Full Text] [Related]
4. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. Ma W; Cheng F; Liu Y ACS Nano; 2018 Jun; 12(6):6326-6334. PubMed ID: 29856595 [TBL] [Abstract][Full Text] [Related]
5. Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network. Chen Y; Zhu J; Xie Y; Feng N; Liu QH Nanoscale; 2019 May; 11(19):9749-9755. PubMed ID: 31066432 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials. Ma C; Chang Y; Wu S; Zhao RR ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35833606 [TBL] [Abstract][Full Text] [Related]
7. Broadband Solar Metamaterial Absorbers Empowered by Transformer-Based Deep Learning. Chen W; Gao Y; Li Y; Yan Y; Ou JY; Ma W; Zhu J Adv Sci (Weinh); 2023 May; 10(13):e2206718. PubMed ID: 36852630 [TBL] [Abstract][Full Text] [Related]
8. Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks. Yang Y; Jiang D; Zhang Q; Le X; Chen T; Duan H; Zheng Y BME Front; 2023; 4():0030. PubMed ID: 37849682 [No Abstract] [Full Text] [Related]
9. Deep-Learning-Based Acoustic Metamaterial Design for Attenuating Structure-Borne Noise in Auditory Frequency Bands. Liu TW; Chan CT; Wu RT Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902994 [TBL] [Abstract][Full Text] [Related]
10. Diverse ranking metamaterial inverse design based on contrastive and transfer learning. Deng Z; Li Y; Li Y; Wang Y; Li W; Zhu Z; Guan C; Shi J Opt Express; 2023 Sep; 31(20):32865-32874. PubMed ID: 37859079 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning in Mechanical Metamaterials: From Prediction and Generation to Inverse Design. Zheng X; Zhang X; Chen TT; Watanabe I Adv Mater; 2023 Nov; 35(45):e2302530. PubMed ID: 37332101 [TBL] [Abstract][Full Text] [Related]
12. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces. Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120 [TBL] [Abstract][Full Text] [Related]
13. Maximized Frequency Doubling through the Inverse Design of Nonlinear Metamaterials. Raju L; Lee KT; Liu Z; Zhu D; Zhu M; Poutrina E; Urbas A; Cai W ACS Nano; 2022 Mar; 16(3):3926-3933. PubMed ID: 35157437 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Jahan T; Dash T; Arman SE; Inum R; Islam S; Jamal L; Yanik AA; Habib A Nanoscale; 2024 Sep; 16(35):16641-16651. PubMed ID: 39171500 [TBL] [Abstract][Full Text] [Related]
15. Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks. Yan R; Wang T; Jiang X; Huang X; Wang L; Yue X; Wang H; Wang Y Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971632 [TBL] [Abstract][Full Text] [Related]
16. Group-theory approach to tailored electromagnetic properties of metamaterials: an inverse-problem solution. Reinke CM; De la Mata Luque TM; Su MF; Sinclair MB; El-Kady I Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066603. PubMed ID: 21797503 [TBL] [Abstract][Full Text] [Related]
17. Flexible design of chiroptical response of planar chiral metamaterials using deep learning. Luo C; Sang T; Ge Z; Lu J; Wang Y Opt Express; 2024 Apr; 32(8):13978-13985. PubMed ID: 38859355 [TBL] [Abstract][Full Text] [Related]
18. A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches. Adibnia E; Mansouri-Birjandi MA; Ghadrdan M; Jafari P Sci Rep; 2024 Mar; 14(1):5787. PubMed ID: 38461205 [TBL] [Abstract][Full Text] [Related]
19. Machine learning-based prediction and inverse design of 2D metamaterial structures with tunable deformation-dependent Poisson's ratio. Tian J; Tang K; Chen X; Wang X Nanoscale; 2022 Sep; 14(35):12677-12691. PubMed ID: 35972125 [TBL] [Abstract][Full Text] [Related]
20. Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-Supervised Learning Strategy. Ma W; Cheng F; Xu Y; Wen Q; Liu Y Adv Mater; 2019 Aug; 31(35):e1901111. PubMed ID: 31259443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]