BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36504734)

  • 1. Uniform self-rectifying resistive random-access memory based on an MXene-TiO
    Zang C; Li B; Sun Y; Feng S; Wang XZ; Wang X; Sun DM
    Nanoscale Adv; 2022 Nov; 4(23):5062-5069. PubMed ID: 36504734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance resistive random access memory using two-dimensional electron gas electrode and its switching mechanism analysis.
    Kim J; Kwon O; Lee K; Han G; Hwang H
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37827148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid.
    Oh SI; Rani JR; Hong SM; Jang JH
    Nanoscale; 2017 Oct; 9(40):15314-15322. PubMed ID: 28820212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplified ZrTiO x -based RRAM cell structure with rectifying characteristics by integrating Ni/n + -Si diode.
    Lin CC; Wu YH; Chang YT; Sun CE
    Nanoscale Res Lett; 2014; 9(1):275. PubMed ID: 24936165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipolar Resistive Switching Characteristics of HfO
    Zhang W; Kong JZ; Cao ZY; Li AD; Wang LG; Zhu L; Li X; Cao YQ; Wu D
    Nanoscale Res Lett; 2017 Dec; 12(1):393. PubMed ID: 28599512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Resistive Switching Mechanisms and Rectification Characteristics of HfO₂-Based Resistive Random Access Memory Devices with Different Electrode Materials.
    Khorolsuren B; Lu S; Sun C; Jin F; Mo W; Song J; Dong K
    J Nanosci Nanotechnol; 2020 Oct; 20(10):6489-6494. PubMed ID: 32385003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application.
    Gao S; Zeng F; Li F; Wang M; Mao H; Wang G; Song C; Pan F
    Nanoscale; 2015 Apr; 7(14):6031-8. PubMed ID: 25765948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric Bipolar Resistive Switching of Halide Perovskite Film in Contact with TiO
    Lee S; Wolfe S; Torres J; Yun M; Lee JK
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27209-27216. PubMed ID: 34080828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunneling of photon-generated carrier in the interface barrier induced resistive switching memory behaviour.
    Sun B; Guo T; Zhou G; Ranjan S; Hou W; Hou Y; Zhao Y
    J Colloid Interface Sci; 2019 Oct; 553():682-687. PubMed ID: 31252184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the Bipolar Resistive Switching Behavior of a Biocompatible Glucose Film for Resistive Random Access Memory.
    Park SP; Tak YJ; Kim HJ; Lee JH; Yoo H; Kim HJ
    Adv Mater; 2018 Jun; 30(26):e1800722. PubMed ID: 29761552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of self-rectifying filamentary resistive switching in LiNbO
    You T; Huang K; Zhao X; Yi A; Chen C; Ren W; Jin T; Lin J; Shuai Y; Luo W; Zhou M; Yu W; Ou X
    Sci Rep; 2019 Dec; 9(1):19134. PubMed ID: 31836794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling Resistive Switching by Using an Optimized MoS
    Qiu JT; Samanta S; Dutta M; Ginnaram S; Maikap S
    Langmuir; 2019 Mar; 35(11):3897-3906. PubMed ID: 30791683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endurance and Cycle-to-cycle Uniformity Improvement in Tri-Layered CeO
    Rana AM; Akbar T; Ismail M; Ahmad E; Hussain F; Talib I; Imran M; Mehmood K; Iqbal K; Nadeem MY
    Sci Rep; 2017 Jan; 7():39539. PubMed ID: 28079056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presetting conductive pathway induced the switching uniformity evolution of a-SiN
    Sun Y; Ma Z; Jiang X; Tan D; Zhang H; Zhang X; Liu J; Yang H; Li W; Xu L; Chen K; Feng D
    Nanotechnology; 2018 Oct; 29(41):415701. PubMed ID: 30004387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Uniform Resistive Switching Performances Using Two-Dimensional Electron Gas at a Thin-Film Heterostructure for Conductive Bridge Random Access Memory.
    Kim SM; Kim HJ; Jung HJ; Kim SH; Park JY; Seok TJ; Park TJ; Lee SW
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30028-30036. PubMed ID: 31343152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ti-Doped GaO
    Park JH; Jeon DS; Kim TG
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43336-43342. PubMed ID: 29139293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation Energy and Bipolar Switching Properties for the Co-Sputtering of ITO
    Chen KH; Cheng CM; Wang NF; Kao MC
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPt
    Wang LG; Cao ZY; Qian X; Zhu L; Cui DP; Li AD; Wu D
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6634-6643. PubMed ID: 28139921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eradicating negative-Set behavior of TiO
    Ismail M; Hashmi A; Rana AM; Kim S
    Nanotechnology; 2020 Aug; 31(32):325201. PubMed ID: 32316002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.