These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36504913)

  • 1. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate.
    Knaus T; Corrado ML; Mutti FG
    ACS Catal; 2022 Dec; 12(23):14459-14475. PubMed ID: 36504913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.
    Knaus T; Böhmer W; Mutti FG
    Green Chem; 2017 Jan; 19(2):453-463. PubMed ID: 28663713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric synthesis of primary amines catalyzed by thermotolerant fungal reductive aminases.
    Mangas-Sanchez J; Sharma M; Cosgrove SC; Ramsden JI; Marshall JR; Thorpe TW; Palmer RB; Grogan G; Turner NJ
    Chem Sci; 2020 May; 11(19):5052-5057. PubMed ID: 34122962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD(P)H-Dependent Dehydrogenases for the Asymmetric Reductive Amination of Ketones: Structure, Mechanism, Evolution and Application.
    Sharma M; Mangas-Sanchez J; Turner NJ; Grogan G
    Adv Synth Catal; 2017 Jun; 359(12):2011-2025. PubMed ID: 30008635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of Reductive Aminases for Asymmetric Synthesis of Enantiopure Rasagiline.
    Zhang K; He Y; Zhu J; Zhang Q; Tang L; Cui L; Feng Y
    Front Bioeng Biotechnol; 2021; 9():798147. PubMed ID: 35004654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of chiral amines using redox biocatalysis.
    Grogan G
    Curr Opin Chem Biol; 2018 Apr; 43():15-22. PubMed ID: 29100099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imine Reductases, Reductive Aminases, and Amine Oxidases for the Synthesis of Chiral Amines: Discovery, Characterization, and Synthetic Applications.
    Cosgrove SC; Brzezniak A; France SP; Ramsden JI; Mangas-Sanchez J; Montgomery SL; Heath RS; Turner NJ
    Methods Enzymol; 2018; 608():131-149. PubMed ID: 30173761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive amination of ketones catalyzed by whole cell biocatalysts containing imine reductases (IREDs).
    Maugeri Z; Rother D
    J Biotechnol; 2017 Sep; 258():167-170. PubMed ID: 28545904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications.
    Yuan B; Yang D; Qu G; Turner NJ; Sun Z
    Chem Soc Rev; 2024 Jan; 53(1):227-262. PubMed ID: 38059509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Discovery of Imine Reductases and their Utilisation for the Synthesis of Tetrahydroisoquinolines.
    Cárdenas-Fernández M; Roddan R; Carter EM; Hailes HC; Ward JM
    ChemCatChem; 2023 Feb; 15(3):e202201126. PubMed ID: 37081856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-Based
    Velikogne S; Resch V; Dertnig C; Schrittwieser JH; Kroutil W
    ChemCatChem; 2018 Aug; 10(15):3236-3246. PubMed ID: 30197686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity.
    Tseliou V; Schilder D; Masman MF; Knaus T; Mutti FG
    Chemistry; 2021 Feb; 27(10):3315-3325. PubMed ID: 33073866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes.
    Knaus T; Mutti FG; Humphreys LD; Turner NJ; Scrutton NS
    Org Biomol Chem; 2015 Jan; 13(1):223-33. PubMed ID: 25372591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverting the Stereoselectivity of an NADH-Dependent Imine-Reductase Variant.
    Stockinger P; Borlinghaus N; Sharma M; Aberle B; Grogan G; Pleiss J; Nestl BM
    ChemCatChem; 2021 Dec; 13(24):5210-5215. PubMed ID: 35873105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive aminations by imine reductases: from milligrams to tons.
    Gilio AK; Thorpe TW; Turner N; Grogan G
    Chem Sci; 2022 May; 13(17):4697-4713. PubMed ID: 35655886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. InspIRED by Nature: NADPH-Dependent Imine Reductases (IREDs) as Catalysts for the Preparation of Chiral Amines.
    Grogan G; Turner NJ
    Chemistry; 2016 Feb; 22(6):1900-1907. PubMed ID: 26667842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Insight into the Catalytic Promiscuity of Amine Dehydrogenases: Asymmetric Synthesis of Secondary and Primary Amines.
    Tseliou V; Masman MF; Böhmer W; Knaus T; Mutti FG
    Chembiochem; 2019 Mar; 20(6):800-812. PubMed ID: 30489013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening and characterization of a diverse panel of metagenomic imine reductases for biocatalytic reductive amination.
    Marshall JR; Yao P; Montgomery SL; Finnigan JD; Thorpe TW; Palmer RB; Mangas-Sanchez J; Duncan RAM; Heath RS; Graham KM; Cook DJ; Charnock SJ; Turner NJ
    Nat Chem; 2021 Feb; 13(2):140-148. PubMed ID: 33380742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro biocatalytic pathway design: orthogonal network for the quantitative and stereospecific amination of alcohols.
    Knaus T; Cariati L; Masman MF; Mutti FG
    Org Biomol Chem; 2017 Oct; 15(39):8313-8325. PubMed ID: 28936532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.