BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36505681)

  • 1. Fluorescent garlic-capped Ag nanoparticles as dual sensors for the detection of acetone and acrylamide.
    El-Naka MA; El-Dissouky A; Ali GY; Ebrahim S; Shokry A
    RSC Adv; 2022 Nov; 12(52):34095-34106. PubMed ID: 36505681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Garlic capped silver nanoparticles for rapid detection of cholesterol.
    El-Naka MA; El-Dissouky A; Ali GY; Ebrahim S; Shokry A
    Talanta; 2023 Feb; 253():123908. PubMed ID: 36087411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capped ZnO quantum dots with a tunable photoluminescence for acetone detection.
    Saber G; El-Dissouky A; Badie G; Ebrahim S; Shokry A
    RSC Adv; 2023 May; 13(24):16453-16470. PubMed ID: 37274405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyvinylpyrrolidone-Capped Silver Nanoparticles for Highly Sensitive and Selective Optical Fiber-Based Ammonium Sensor.
    Potdar RP; Khollam YB; Shaikh SF; More PS; Rana AUHS
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.
    Zheng Y; Chen Z; Zheng C; Lee YI; Hou X; Wu L; Tian Y
    Talanta; 2016 Aug; 155():87-93. PubMed ID: 27216660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: determination of free Ag+ in silver nanoparticles solution.
    Khantaw T; Boonmee C; Tuntulani T; Ngeontae W
    Talanta; 2013 Oct; 115():849-56. PubMed ID: 24054673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-tunable Au@Ag nanoparticles for colorimetric and SERS dual-mode sensing of palmatine in traditional Chinese medicine.
    Gao Y; Hu Z; Wu J; Ning Z; Jian J; Zhao T; Liang X; Yang X; Yang Z; Zhao Q; Wang J; Wang Z; Dina NE; Gherman AMR; Jiang Z; Zhou H
    J Pharm Biomed Anal; 2019 Sep; 174():123-133. PubMed ID: 31163346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Surfactant-Capped Ag Nanoparticles as a Highly Selective and Sensitive Colorimetric Sensor for Citrate Detection.
    Shaban SM; Lee JY; Kim DH
    ACS Omega; 2020 May; 5(19):10696-10703. PubMed ID: 32455188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes.
    Muddassir M; Alarifi A; Abduh NAY; Saeed WS; Karami AM; Afzal M
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric acetone sensor based on ionic liquid functionalized drug-mediated silver nanostructures.
    Asad M; Muhammad N; Khan N; Shah M; Khan M; Khan M; Badshah A; Latif Z; Nishan U
    J Pharm Biomed Anal; 2022 Nov; 221():115043. PubMed ID: 36155483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of selective chemical sensor with ternary ZnO/SnO
    Rahman MM; Alam MM; Asiri AM; Islam MA
    Talanta; 2017 Aug; 170():215-223. PubMed ID: 28501161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples.
    Zokaei M; Abedi AS; Kamankesh M; Shojaee-Aliababadi S; Mohammadi A
    Food Chem; 2017 Nov; 234():55-61. PubMed ID: 28551267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strawberry-like SiO
    Wu L; Zhang W; Liu C; Foda MF; Zhu Y
    Food Chem; 2020 Oct; 328():127106. PubMed ID: 32485584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine.
    Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-friendly ionic liquid based ultrasonic assisted selective extraction coupled with a simple liquid chromatography for the reliable determination of acrylamide in food samples.
    Albishri HM; El-Hady DA
    Talanta; 2014 Jan; 118():129-36. PubMed ID: 24274280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplified electrochemical sensor employing Ag NPs functionalized graphene paper electrode for high sensitive analysis of Sudan I.
    Meng F; Qin Y; Zhang W; Chen F; Zheng L; Xing J; Aihaiti A; Zhang M
    Food Chem; 2022 Mar; 371():131204. PubMed ID: 34598114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dithiocarbamate-capped silver nanoparticles as a resonance light scattering probe for simultaneous detection of lead(II) ions and cysteine.
    Cao H; Wei M; Chen Z; Huang Y
    Analyst; 2013 Apr; 138(8):2420-6. PubMed ID: 23463028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fast and Easy Probe Based on CMC/Eu (Ⅲ) Nanocomposites to Detect Acrylamide in Different Food Simulants Migrating from Food-Contacting Paper Materials.
    Chen J; Ye J; Zhang M; Xiong J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct determination of acrylamide in potato chips by using headspace solid-phase microextraction coupled with gas chromatography-flame ionization detection.
    Ghiasvand AR; Hajipour S
    Talanta; 2016; 146():417-22. PubMed ID: 26695284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An upconversion biosensor based on DNA hybridization and DNA-templated silver nanoclusters for the determination of acrylamide.
    Rong Y; Hassan MM; Ouyang Q; Zhang Y; Wang L; Chen Q
    Biosens Bioelectron; 2022 Nov; 215():114581. PubMed ID: 35926392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.