BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36505704)

  • 1. Predicting the aggregation number of cationic surfactants based on ANN-QSAR modeling approaches: understanding the impact of molecular descriptors on aggregation numbers.
    Abdous B; Sajjadi SM; Bagheri A
    RSC Adv; 2022 Nov; 12(52):33666-33678. PubMed ID: 36505704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting rejection of emerging contaminants through RO membrane filtration based on ANN-QSAR modeling approach: trends in molecular descriptors and structures towards rejections.
    Mousavi SL; Sajjadi SM
    RSC Adv; 2023 Aug; 13(34):23754-23771. PubMed ID: 37560620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to
    Habibi-Yangjeh A; Danandeh-Jenagharad M
    Monatsh Chem; 2009; 140(11):1279-1288. PubMed ID: 26166848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design of a Low-Data Regime of Pyrrole Antioxidants for Radical Scavenging Activities Using Quantum Chemical Descriptors and QSAR with the GA-MLR and ANN Concepts.
    Xie W; Wiriyarattanakul S; Rungrotmongkol T; Shi L; Wiriyarattanakul A; Maitarad P
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds.
    Shi Y
    Sci Rep; 2021 Apr; 11(1):8806. PubMed ID: 33888843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive QSAR modeling of CCR5 antagonist piperidine derivatives using chemometric tools.
    Roy K; Mandal AS
    J Enzyme Inhib Med Chem; 2009 Feb; 24(1):205-23. PubMed ID: 18608745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.
    Roy K; Pratim Roy P
    Eur J Med Chem; 2009 Jul; 44(7):2913-22. PubMed ID: 19128860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists.
    Dastmalchi S; Hamzeh-Mivehroud M; Asadpour-Zeynali K
    Iran J Pharm Res; 2012; 11(1):97-108. PubMed ID: 25317190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid-genetic algorithm based descriptor optimization and QSAR models for predicting the biological activity of Tipranavir analogs for HIV protease inhibition.
    Reddy AS; Kumar S; Garg R
    J Mol Graph Model; 2010 Jun; 28(8):852-62. PubMed ID: 20399695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR.
    Habibi-Yangjeh A; Danandeh-Jenagharad M; Nooshyar M
    J Mol Model; 2006 Feb; 12(3):338-47. PubMed ID: 16344950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation.
    Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A
    J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of glass transition temperature (T(g)) of some compounds in organic electroluminescent devices with their molecular properties.
    Kim YS; Kim JH; Kim JS; No KT
    J Chem Inf Comput Sci; 2002; 42(1):75-81. PubMed ID: 11855969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
    Ahmadi S; Habibpour E
    Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR Studying of Oxidation Behavior of Benzoxazines as an Important Pharmaceutical Property.
    Baher E; Darzi N
    Iran J Pharm Res; 2017; 16(1):146-157. PubMed ID: 28496470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantitative structure-activity relationship model for prediction of cardiotoxicity of chemical components in traditional Chinese medicines].
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Jun; 49(3):551-556. PubMed ID: 28628163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones.
    Roy K; Mandal AS
    J Enzyme Inhib Med Chem; 2008 Dec; 23(6):980-95. PubMed ID: 18608761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors.
    Xu J; Zhu L; Fang D; Wang L; Xiao S; Liu L; Xu W
    J Mol Graph Model; 2012 Jun; 36():10-9. PubMed ID: 22503858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Structure Activity Relationship Models for the Antioxidant Activity of Polysaccharides.
    Li Z; Nie K; Wang Z; Luo D
    PLoS One; 2016; 11(9):e0163536. PubMed ID: 27685320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.