These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36506088)

  • 1. Reduced
    Talvio K; Minkeviciene R; Townsley KG; Achuta VS; Huckins LM; Corcoran P; Brennand KJ; Castrén ML
    Front Cell Dev Biol; 2022; 10():1034679. PubMed ID: 36506088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.
    Sheridan SD; Theriault KM; Reis SA; Zhou F; Madison JM; Daheron L; Loring JF; Haggarty SJ
    PLoS One; 2011; 6(10):e26203. PubMed ID: 22022567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional changes of AMPA responses in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome.
    Achuta VS; Möykkynen T; Peteri UK; Turconi G; Rivera C; Keinänen K; Castrén ML
    Sci Signal; 2018 Jan; 11(513):. PubMed ID: 29339535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of the fragile X mental retardation protein causes aberrant differentiation in human neural progenitor cells.
    Sunamura N; Iwashita S; Enomoto K; Kadoshima T; Isono F
    Sci Rep; 2018 Aug; 8(1):11585. PubMed ID: 30072797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells.
    Kumari D; Swaroop M; Southall N; Huang W; Zheng W; Usdin K
    Stem Cells Transl Med; 2015 Jul; 4(7):800-8. PubMed ID: 25999519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue plasminogen activator contributes to alterations of neuronal migration and activity-dependent responses in fragile X mice.
    Achuta VS; Rezov V; Uutela M; Louhivuori V; Louhivuori L; Castrén ML
    J Neurosci; 2014 Jan; 34(5):1916-23. PubMed ID: 24478370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic modifications in human fragile X pluripotent stem cells; Implications in fragile X syndrome modeling.
    Gerhardt J
    Brain Res; 2017 Feb; 1656():55-62. PubMed ID: 26475977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation Delay of Human GABAergic Neurogenesis in Fragile X Syndrome Pluripotent Stem Cells.
    Zhang A; Sokolova I; Domissy A; Davis J; Rao L; Hana Utami K; Wang Y; Hagerman RJ; Pouladi MA; Sanna P; Boland MJ; Loring JF
    Stem Cells Transl Med; 2022 Jun; 11(6):613-629. PubMed ID: 35556144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth.
    Doers ME; Musser MT; Nichol R; Berndt ER; Baker M; Gomez TM; Zhang SC; Abbeduto L; Bhattacharyya A
    Stem Cells Dev; 2014 Aug; 23(15):1777-87. PubMed ID: 24654675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated transcriptome analysis of human iPS cells derived from a fragile X syndrome patient during neuronal differentiation.
    Lu P; Chen X; Feng Y; Zeng Q; Jiang C; Zhu X; Fan G; Xue Z
    Sci China Life Sci; 2016 Nov; 59(11):1093-1105. PubMed ID: 27730449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BDNF in fragile X syndrome.
    Castrén ML; Castrén E
    Neuropharmacology; 2014 Jan; 76 Pt C():729-36. PubMed ID: 23727436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome.
    Kaufmann M; Schuffenhauer A; Fruh I; Klein J; Thiemeyer A; Rigo P; Gomez-Mancilla B; Heidinger-Millot V; Bouwmeester T; Schopfer U; Mueller M; Fodor BD; Cobos-Correa A
    J Biomol Screen; 2015 Oct; 20(9):1101-11. PubMed ID: 26024946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Throughput Small Molecule Screen for Reactivation of
    Hunt JFV; Li M; Risgaard R; Ananiev GE; Wildman S; Zhang F; Bugni TS; Zhao X; Bhattacharyya A
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons.
    Park CY; Halevy T; Lee DR; Sung JJ; Lee JS; Yanuka O; Benvenisty N; Kim DW
    Cell Rep; 2015 Oct; 13(2):234-41. PubMed ID: 26440889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome.
    Brasa S; Mueller A; Jacquemont S; Hahne F; Rozenberg I; Peters T; He Y; McCormack C; Gasparini F; Chibout SD; Grenet O; Moggs J; Gomez-Mancilla B; Terranova R
    Clin Epigenetics; 2016; 8():15. PubMed ID: 26855684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling FXS with Mouse Neural Progenitors.
    Peteri UK; Castrén ML
    Methods Mol Biol; 2019; 1942():71-78. PubMed ID: 30900176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.
    Lovelace JW; Wen TH; Reinhard S; Hsu MS; Sidhu H; Ethell IM; Binder DK; Razak KA
    Neurobiol Dis; 2016 May; 89():126-35. PubMed ID: 26850918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome.
    Peteri UK; Pitkonen J; de Toma I; Nieminen O; Utami KH; Strandin TM; Corcoran P; Roybon L; Vaheri A; Ethell I; Casarotto P; Pouladi MA; Castrén ML
    Glia; 2021 Dec; 69(12):2947-2962. PubMed ID: 34427356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome.
    Achuta VS; Grym H; Putkonen N; Louhivuori V; Kärkkäinen V; Koistinaho J; Roybon L; Castrén ML
    Dev Neurobiol; 2017 Apr; 77(4):438-453. PubMed ID: 27411166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling.
    Martin P; Wagh V; Reis SA; Erdin S; Beauchamp RL; Shaikh G; Talkowski M; Thiele E; Sheridan SD; Haggarty SJ; Ramesh V
    Mol Autism; 2020; 11(1):2. PubMed ID: 31921404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.