These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 36506116)
1. Change Laws of Pore-Fracture Structure of Coal under High-Temperature Steam Shock. Xu Y; Lin B; Li Y ACS Omega; 2022 Dec; 7(48):44298-44309. PubMed ID: 36506116 [TBL] [Abstract][Full Text] [Related]
2. Experimental Investigation on Pore-Fracture Variations in Coal Affected by Carbon Disulfide. Zheng C; Li X; Li H; Jiang B; Chen Z ACS Omega; 2023 Oct; 8(41):38426-38440. PubMed ID: 37867664 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Pore Structure and Its Relationship with Methane Adsorption on Medium-High Volatile Bituminous Coal: An Experimental Study Using Nuclear Magnetic Resonance. Zhang B; Fu X; Deng Z; Hao M J Nanosci Nanotechnol; 2021 Jan; 21(1):515-528. PubMed ID: 33213650 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Evolution of Nanoscale Pores of Different Rank Coals Under Solvent Extraction. Zhang X; Zhang S; Li X; Heng S J Nanosci Nanotechnol; 2021 Jan; 21(1):450-459. PubMed ID: 33213644 [TBL] [Abstract][Full Text] [Related]
5. Selection Effect of Liquid Nitrogen Freeze-Thaw Cycles on Full Pore Size Distribution of Different Rank Coals. Li Y; Ren Z; Song D; Liu W; Wang H; Guo X ACS Omega; 2023 Mar; 8(10):9526-9538. PubMed ID: 36936307 [TBL] [Abstract][Full Text] [Related]
6. Investigation on the influence of the macropores in coal on CBM recovery. Liu X; Sang S; Zhou X; Liu S; Wang Z; Mo Y Heliyon; 2023 Sep; 9(9):e19558. PubMed ID: 37809915 [TBL] [Abstract][Full Text] [Related]
7. Reconstruction and seepage simulation of a coal pore-fracture network based on CT technology. Jing D; Meng X; Ge S; Zhang T; Ma M; Tong L PLoS One; 2021; 16(6):e0252277. PubMed ID: 34166372 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive Analysis of Connectivity and Permeability of a Pore-Fracture Structure in Low Permeability Seam of Huainan-Huaibei Coalfield. Wang Z; Fang H; Sang S; Guo J; Yu S; Liu H; Xu H ACS Omega; 2024 Apr; 9(13):15357-15371. PubMed ID: 38585139 [TBL] [Abstract][Full Text] [Related]
9. Changes in mineral fraction and pore morphology of coal with acidification treatment: contribution of clay minerals to methane adsorption. Wang L; Li Z; Li J; Chen Y; Zhang K; Han X; Xu G Environ Sci Pollut Res Int; 2023 Nov; 30(54):114886-114900. PubMed ID: 37875755 [TBL] [Abstract][Full Text] [Related]
10. Mineral Characteristics of Low-Rank Coal and the Effects on the Micro- and Nanoscale Pore-Fractures: A Case Study from the Zhundong Coalfield, Northwest China. Zhou S; Liu D; Cai Y; Wang Y; Yan D J Nanosci Nanotechnol; 2021 Jan; 21(1):460-471. PubMed ID: 33213645 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of the pore and molecular structure evolution of coal exposed to acid mine drainage (AMD). Luo JZ; Cai YY; Tang H; Yu J; Zheng LW; Li HH Sci Total Environ; 2024 Jan; 906():167836. PubMed ID: 37844642 [TBL] [Abstract][Full Text] [Related]
12. Petrographic and Geochemical Controls on Methane Genesis, Pore Fractal Attributes, and Sorption of Lower Gondwana Coal of Jharia Basin, India. Das PR; Mendhe VA; Kamble AD; Sharma P; Shukla P; Varma AK ACS Omega; 2022 Jan; 7(1):299-324. PubMed ID: 35036701 [TBL] [Abstract][Full Text] [Related]
13. Experimental Study on Spontaneous Imbibition of Coal Samples of Different Ranks Based on the NMR Relaxation Spectrum. Wang N; Du Y; Fu C; Ma X; Zhang X; Wang J; Wang N ACS Omega; 2023 Sep; 8(37):33526-33542. PubMed ID: 37744802 [TBL] [Abstract][Full Text] [Related]
14. Simulation Study of Coal Seam Gas Extraction Characteristics Based on Coal Permeability Evolution Model under Thermal Effect. Cao N; Jing P; Huo Z; Liang Y; Zhang L ACS Omega; 2024 May; 9(21):22871-22891. PubMed ID: 38826553 [TBL] [Abstract][Full Text] [Related]
15. Petrophysical characterization of high-rank coal by nuclear magnetic resonance: a case study of the Baijiao coal reservoir, SW China. Zhang D; Chu Y; Li S; Yang Y; Bai X; Ye C; Wen D R Soc Open Sci; 2018 Dec; 5(12):181411. PubMed ID: 30662747 [TBL] [Abstract][Full Text] [Related]
16. Study of the Microstructure of Coal at Different Temperatures and Quantitative Fractal Characterization. Xu YL; Huo XW; Wang LY; Gong XJ; Lv ZC; Zhao T ACS Omega; 2023 Jun; 8(25):23098-23111. PubMed ID: 37396220 [TBL] [Abstract][Full Text] [Related]
17. Acidification-Induced Micronano Mechanical Properties and Microscopic Permeability Enhancement Mechanism of Coal. Xie H; Li X; Sui H; Cai J; Xu E; Zhao J Langmuir; 2024 Feb; 40(8):4496-4513. PubMed ID: 38347737 [TBL] [Abstract][Full Text] [Related]
18. Classification of Pore-fracture Combination Types in Tectonic Coal Based on Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance. Ni X; Zhao Z; Wang B; Li Z ACS Omega; 2020 Dec; 5(51):33225-33234. PubMed ID: 33403284 [TBL] [Abstract][Full Text] [Related]
19. Experimental research on the influence of acid on the chemical and pore structure evolution characteristics of Wenjiaba tectonic coal. Li X; Li X; Xu E; Xie H; Sui H; Cai J; He Y PLoS One; 2024; 19(4):e0301923. PubMed ID: 38652724 [TBL] [Abstract][Full Text] [Related]
20. Low-Field NMR Experimental Study on the Effect of Confining Pressure on the Porous Structure and Connectivity of High-Rank Coal. Pi Z; Dong Z; Li R; Wang Y; Li G; Zhang Y; Peng B; Meng L; Fu S; Yin G ACS Omega; 2022 Apr; 7(16):14283-14290. PubMed ID: 35573215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]