BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36506122)

  • 1. Development and Performance Evaluation of Polytetrafluoroethylene-Membrane-Based Automotive Cabin Air Filter.
    Shim E; Noh J; Kim Y
    ACS Omega; 2022 Dec; 7(48):43738-43746. PubMed ID: 36506122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Polytetrafluoroethylene Membrane High-Efficiency Particulate Air Filter Performance with Melt-Blown Media.
    Shim E; Jang JP; Moon JJ; Kim Y
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Laminated Micro/Nano Filter and Its Application for Inhalable PM Removal.
    Ma W; Qi H; Zhang Y; Lin M; Qiu Y; Zhang C
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of melt-blown and glass-fiber HEPA asbestos filters based on ISO filter classes, filtration efficiency, power consumption, and face velocity.
    Hwang SH; Lee BH
    J Air Waste Manag Assoc; 2022 Mar; 72(3):271-280. PubMed ID: 34324413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and properties of PTFE hollow fiber membranes for the removal of ultrafine particles in PM
    Xu H; Jin W; Wang F; Li C; Wang J; Zhu H; Guo Y
    RSC Adv; 2018 Nov; 8(67):38245-38258. PubMed ID: 35559087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven.
    Xu K; Zhan L; Yan R; Ke Q; Yin A; Huang C
    Nanoscale; 2022 Jan; 14(2):419-427. PubMed ID: 34937077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Filtration Performance of the Baghouse Filters for Ultra-Low Emission as a Function of Filter Pore Size and Fiber Diameter.
    Liu X; Shen H; Nie X
    Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30654532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polytetrafluoroethylene/Polyphenylene Sulfide Needle-Punched Triboelectric Air Filter for Efficient Particulate Matter Removal.
    Wang Y; Xu Y; Wang D; Zhang Y; Zhang X; Liu J; Zhao Y; Huang C; Jin X
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48437-48449. PubMed ID: 31790597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cleanable Self-Assembled Nano-SiO
    Luo Y; Shen Z; Ma Z; Chen H; Wang X; Luo M; Wang R; Huang J
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HEPA filters for airliner cabins: State of the art and future development.
    Zhang X; Liu J; Liu X; Liu C; Chen Q
    Indoor Air; 2022 Sep; 32(9):e13103. PubMed ID: 36168223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a high-efficiency cabin air filter for simultaneous mitigation of ultrafine particle and carbon dioxide exposures inside passenger vehicles.
    Lee ES; Zhu Y
    Environ Sci Technol; 2014 Feb; 48(4):2328-35. PubMed ID: 24471775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects.
    Rudell B; Wass U; Hörstedt P; Levin JO; Lindahl R; Rannug U; Sunesson AL; Ostberg Y; Sandström T
    Occup Environ Med; 1999 Apr; 56(4):222-31. PubMed ID: 10450238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance bag filter with a super-hydrophobic microporous polytetrafluoroethylene layer fabricated by air-assisted electrospraying.
    Heo KJ; Oh HJ; Eom H; Kim Y; Jung JH
    Sci Total Environ; 2021 Aug; 783():147043. PubMed ID: 34088110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Studies of PowerCore Filters and Pleated Filter Baffles.
    Dziubak T
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory and on-road evaluations of cabin air filters using number and surface area concentration monitors.
    Qi C; Stanley N; Pui DY; Kuehn TH
    Environ Sci Technol; 2008 Jun; 42(11):4128-32. PubMed ID: 18589976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous production and properties of mutil-level nanofiber air filters by blow spinning.
    Song J; Liu Z; Li Z; Wu H
    RSC Adv; 2020 May; 10(33):19615-19620. PubMed ID: 35515444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Polypropylene Micro and Nanofibers by Electrostatic-Assisted Melt Blown and Their Application.
    Pu Y; Zheng J; Chen F; Long Y; Wu H; Li Q; Yu S; Wang X; Ning X
    Polymers (Basel); 2018 Aug; 10(9):. PubMed ID: 30960884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of airborne nanoparticles by membrane coated filters.
    Liu J; Pui DY; Wang J
    Sci Total Environ; 2011 Oct; 409(22):4868-74. PubMed ID: 21889783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant.
    Clark Burton N; Adhikari A; Grinshpun SA; Hornung R; Reponen T
    J Environ Monit; 2005 May; 7(5):475-80. PubMed ID: 15877169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Solvent Induced Phase Separation (NIPS) for Fabricating High Filtration Efficiency (FE) Polymeric Membranes for Face Mask and Air Filtration Applications.
    Ogbuoji EA; Stephens L; Haycraft A; Wooldridge E; Escobar IC
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.