BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36506176)

  • 1. Facile Microwave Synthesis of Hierarchical Porous Copper Oxide and Its Catalytic Activity and Kinetics for Carbon Monoxide Oxidation.
    Zedan AF; AlJaber AS; El-Shall MS
    ACS Omega; 2022 Dec; 7(48):44021-44032. PubMed ID: 36506176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Nanoparticles Supported on Urchin-Like CuO: Synthesis, Characterization, and Their Catalytic Performance for CO Oxidation.
    Dong F; Guo Y; Zhang D; Zhu B; Huang W; Zhang S
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31892172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the reducibility and catalytic activity of CuO nanoparticles for low temperature CO oxidation.
    Zedan AF; Mohamed AT; El-Shall MS; AlQaradawi SY; AlJaber AS
    RSC Adv; 2018 May; 8(35):19499-19511. PubMed ID: 35540972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inexpensive and easily replicable precipitation of CuO nanoparticles for low temperature carbon monoxide and toluene catalytic oxidation.
    Assaouka HT; Daawe DM; Fomekong RL; Nsangou IN; Kouotou PM
    Heliyon; 2022 Sep; 8(9):e10689. PubMed ID: 36164522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combustion Synthesis of Non-Precious CuO-CeO₂ Nanocrystalline Catalysts with Enhanced Catalytic Activity for Methane Oxidation.
    Zedan AF; AlJaber AS
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30875991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Low-Temperature CO Oxidation over CuO-Based α-MnO
    Cui Y; Song H; Shi Y; Ge P; Chen M; Xu L
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic oxidation of CO over mesoporous copper-doped ceria catalysts
    Zhu H; Chen Y; Wang Z; Liu W; Wang L
    RSC Adv; 2018 Apr; 8(27):14888-14897. PubMed ID: 35541330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance.
    Lan D; Qin M; Yang R; Chen S; Wu H; Fan Y; Fu Q; Zhang F
    J Colloid Interface Sci; 2019 Jan; 533():481-491. PubMed ID: 30176539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of MnO
    Huang Q; Si H; Yu S; Wang J; Tao T; Yang B; Zhao Y; Chen M
    Environ Technol; 2020 May; 41(13):1664-1676. PubMed ID: 30379618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu2O and the Dispersion of Cu2O, CuO, and CeO2.
    Wang Z; Li R; Chen Q
    Chemphyschem; 2015 Aug; 16(11):2415-23. PubMed ID: 26017784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol to Acetaldehyde Conversion under Thermal and Microwave Heating of ZnO-CuO-SiO
    Kustov AL; Tarasov AL; Tkachenko OP; Mishin IV; Kapustin GI; Kustov LM
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-functional Ag-Cu
    Verma A; Kumar S; Chang WK; Fu YP
    Dalton Trans; 2020 Jan; 49(3):625-637. PubMed ID: 31859301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties.
    Raghavendra GM; Jung J; Kim D; Seo J
    Carbohydr Polym; 2017 Sep; 172():78-84. PubMed ID: 28606550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hetero-metal cation control of CuO nanostructures and their high catalytic performance for CO oxidation.
    Huang H; Zhang L; Wu K; Yu Q; Chen R; Yang H; Peng X; Ye Z
    Nanoscale; 2012 Dec; 4(24):7832-41. PubMed ID: 23151539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of high specific surface area CuO-CeO2 catalysts for high temperature processes of hydrogen production: steam re-forming of ethanol and methane dry re-forming.
    Djinović P; Batista J; Cehić B; Pintar A
    J Phys Chem A; 2010 Mar; 114(11):3939-49. PubMed ID: 19883056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation.
    Chen G; Xu Q; Yang Y; Li C; Huang T; Sun G; Zhang S; Ma D; Li X
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23538-44. PubMed ID: 26455260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Inexpensive Ternary Metal Oxides by a Co-Precipitation Method for Catalytic Oxidation of Carbon Monoxide.
    Cam TS; Anh NPQ; Duc BNM; Thuy NT; Lei J; Thanh NT; Huy NN
    Chem Asian J; 2023 Nov; 18(22):e202300683. PubMed ID: 37747137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons.
    Wang CH; Lin SS; Chen CL; Weng HS
    Chemosphere; 2006 Jun; 64(3):503-9. PubMed ID: 16403565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new highly active La
    Liu H; Wang K; Cao X; Su J; Gu Z
    RSC Adv; 2021 Mar; 11(21):12532-12542. PubMed ID: 35423823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.