These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36506202)
1. Iron(II) Phthalocyanine Adsorbed on Defective Graphenes: A Density Functional Study. Yin H; Lin H; Zhang Y; Huang S ACS Omega; 2022 Dec; 7(48):43915-43922. PubMed ID: 36506202 [TBL] [Abstract][Full Text] [Related]
2. Interfacial Strengthening of Graphene/Aluminum Composites through Point Defects: A First-Principles Study. Zhang X; Wang S Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33804166 [TBL] [Abstract][Full Text] [Related]
3. A density functional theory study on the adsorption reaction mechanism of double CO Zhang S; Liang Z; Li K; Zhang J; Ren S J Mol Model; 2022 Apr; 28(5):118. PubMed ID: 35412080 [TBL] [Abstract][Full Text] [Related]
4. A Density Functional Theory Study of Ground and Low-Lying Excited Electronic States in Defective Graphenes. Tachikawa H; Nagoya Y; Kawabata H J Chem Theory Comput; 2009 Aug; 5(8):2101-7. PubMed ID: 26613150 [TBL] [Abstract][Full Text] [Related]
5. Electronic and structural properties at the interface between iron-phthalocyanine and Cu(110). Hu F; Mao H; Zhang H; Wu K; Cai Y; He P J Chem Phys; 2014 Mar; 140(9):094704. PubMed ID: 24606373 [TBL] [Abstract][Full Text] [Related]
6. An ab initio study of the interaction between an iron atom and graphene containing a single Stone-Wales defect. Wang QE; Wang FH; Shang JX; Zhou YS J Phys Condens Matter; 2009 Dec; 21(48):485506. PubMed ID: 21832525 [TBL] [Abstract][Full Text] [Related]
7. Regulation Dipole Moments of N-Doped Graphene Coordinated with FePc Toward Highly Efficient Microwave Absorption Performance in C Band. Zhang J; Chen L; Li X; Cao H; Chen W; Wang X Small; 2024 Jul; 20(27):e2308459. PubMed ID: 38348906 [TBL] [Abstract][Full Text] [Related]
8. Tribological behavior of graphene/h-BN vdW heterostructures: the role of defects at the BN layer. Han Z; Ru G; Li Y; Ma M J Phys Condens Matter; 2024 Jul; 36(42):. PubMed ID: 38976980 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of Tunable aryl alkyl ionic liquids (TILs) on the graphene and Defective graphene nanosheets: A DFT Study. Shakouri S; Khalili B; Nikpasand M; Kefayati H J Mol Graph Model; 2023 Dec; 125():108612. PubMed ID: 37657330 [TBL] [Abstract][Full Text] [Related]
10. Exploring the nature of interaction and stability between DNA/RNA base pairs and defective & defect-dopant graphene sheets. A possible insights on DNA/RNA sequencing. Saravanan V; Rajamani A; Vasudevan S; Ramasamy S Int J Biol Macromol; 2020 Mar; 146():387-404. PubMed ID: 31917208 [TBL] [Abstract][Full Text] [Related]
11. Insight into the interaction between DNA bases and defective graphenes: covalent or non-covalent. Xu Z; Meher BR; Eustache D; Wang Y J Mol Graph Model; 2014 Feb; 47():8-17. PubMed ID: 24215998 [TBL] [Abstract][Full Text] [Related]
12. The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids. Shakourian-Fard M; Kamath G Phys Chem Chem Phys; 2017 Feb; 19(6):4383-4395. PubMed ID: 28119976 [TBL] [Abstract][Full Text] [Related]
13. Stabilities and electronic properties of monolayer MoS2 with one or two sulfur line vacancy defects. Han Y; Hu T; Li R; Zhou J; Dong J Phys Chem Chem Phys; 2015 Feb; 17(5):3813-9. PubMed ID: 25562072 [TBL] [Abstract][Full Text] [Related]
14. Valence-band electronic structure of iron phthalocyanine: an experimental and theoretical photoelectron spectroscopy study. Brena B; Puglia C; de Simone M; Coreno M; Tarafder K; Feyer V; Banerjee R; Göthelid E; Sanyal B; Oppeneer PM; Eriksson O J Chem Phys; 2011 Feb; 134(7):074312. PubMed ID: 21341849 [TBL] [Abstract][Full Text] [Related]
15. Charged lithium adsorption on pristine and defective silicene: a theoretical study. Juan J; Fernández-Werner L; Bechthold P; Villarreal J; Gaztañaga F; Jasen PV; Faccio R; González EA J Phys Condens Matter; 2022 Apr; 34(24):. PubMed ID: 35358960 [TBL] [Abstract][Full Text] [Related]
16. Theoretical investigation of the molecular and electronic structures and excitation spectra of iron phthalocyanine and its derivatives, FePc and FePcL(n) (L = Py, CN-; n = 1, 2). Sumimoto M; Kawashima Y; Hori K; Fujimoto H Dalton Trans; 2009 Aug; (29):5737-46. PubMed ID: 20449088 [TBL] [Abstract][Full Text] [Related]
17. Heterojunction nanowires having high activity and stability for the reduction of oxygen: formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs). Zhu J; Jia N; Yang L; Su D; Park J; Choi Y; Gong K J Colloid Interface Sci; 2014 Apr; 419():61-7. PubMed ID: 24491331 [TBL] [Abstract][Full Text] [Related]
18. A density functional theory study on the binding of NO onto FePc films. Tran NL; Kummel AC J Chem Phys; 2007 Dec; 127(21):214701. PubMed ID: 18067369 [TBL] [Abstract][Full Text] [Related]
19. Superior Catalytic Activity of Electrochemically Reduced Graphene Oxide Supported Iron Phthalocyanines toward Oxygen Reduction Reaction. Liu D; Long YT ACS Appl Mater Interfaces; 2015 Nov; 7(43):24063-8. PubMed ID: 26477473 [TBL] [Abstract][Full Text] [Related]
20. Rectification, transport properties of doped defective graphene nanoribbon junctions. Zaminpayma E; Nayebi P; Emami-Razavi M Nanotechnology; 2021 May; 32(20):205204. PubMed ID: 33571982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]