These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36507183)

  • 1. A room-temperature antiferroelectric in hybrid perovskite enables highly efficient energy storage at low electric fields.
    Liu Y; Xu H; Liu X; Han S; Guo W; Ma Y; Fan Q; Hu X; Sun Z; Luo J
    Chem Sci; 2022 Nov; 13(45):13499-13506. PubMed ID: 36507183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft Perovskite-Type Antiferroelectric with Giant Electrocaloric Strength near Room Temperature.
    Li M; Han S; Liu Y; Luo J; Hong M; Sun Z
    J Am Chem Soc; 2020 Dec; 142(49):20744-20751. PubMed ID: 33226789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Metal-Free Molecular Antiferroelectric Material Showing High Phase Transition Temperatures and Large Electrocaloric Effects.
    Xu H; Guo W; Wang J; Ma Y; Han S; Liu Y; Lu L; Pan X; Luo J; Sun Z
    J Am Chem Soc; 2021 Sep; 143(35):14379-14385. PubMed ID: 34459600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Antiferroelectric of Lead Iodide Hybrid Perovskites.
    Han S; Liu X; Liu Y; Xu Z; Li Y; Hong M; Luo J; Sun Z
    J Am Chem Soc; 2019 Aug; 141(32):12470-12474. PubMed ID: 31364848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-temperature double perovskite molecule-based antiferroelectric with excellent anti-breakdown capacity for energy storage.
    Liu Y; Ma Y; Zeng X; Xu H; Guo W; Wang B; Hua L; Tang L; Luo J; Sun Z
    Nat Commun; 2023 Apr; 14(1):2420. PubMed ID: 37105974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unprecedented Ferroelectric-Antiferroelectric-Paraelectric Phase Transitions Discovered in an Organic-Inorganic Hybrid Perovskite.
    Li PF; Liao WQ; Tang YY; Ye HY; Zhang Y; Xiong RG
    J Am Chem Soc; 2017 Jun; 139(25):8752-8757. PubMed ID: 28595017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of an Above-Room-Temperature Antiferroelectric in Two-Dimensional Hybrid Perovskite.
    Wu Z; Liu X; Ji C; Li L; Wang S; Peng Y; Tao K; Sun Z; Hong M; Luo J
    J Am Chem Soc; 2019 Mar; 141(9):3812-3816. PubMed ID: 30775915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving Ultrahigh Energy Storage Density of La and Ta Codoped AgNbO
    Li B; Yan Z; Zhou X; Qi H; Koval V; Luo X; Luo H; Yan H; Zhang D
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4246-4256. PubMed ID: 36639350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewing Halogen Substitution Strategy for the Rational Design of High-Curie Temperature Metal-Free Molecular Antiferroelectrics.
    Li W; Ma Y; Hu X; Xu H; Liu Y; Han S; Fan Q; Gao C; Sun Z; Luo J
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202401221. PubMed ID: 38342759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh Energy Efficiency and Large Discharge Energy Density in Flexible Dielectric Nanocomposites with Pb
    Zou K; He C; Yu Y; Huang J; Fan Z; Lu Y; Huang H; Zhang X; Zhang Q; He Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12847-12856. PubMed ID: 32084310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compromise Optimized Superior Energy Storage Performance in Lead-Free Antiferroelectrics by Antiferroelectricity Modulation and Nanodomain Engineering.
    Chen L; Zhou C; Zhu L; Qi H; Chen J
    Small; 2024 Feb; 20(7):e2306486. PubMed ID: 37803415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic Atomic-Scale Antiferroelectric VOF
    Xu T; Zhang J; Shimada T; Wang J; Yang H
    Nano Lett; 2023 Oct; 23(19):9080-9086. PubMed ID: 37722001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Ultrahigh Energy Storage Performance for NaNbO
    Wei K; Duan J; Zhou X; Li G; Zhang D; Li H
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48354-48364. PubMed ID: 37791962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, Antiferroelectricity and Energy-Storage Performance of Lead Hafnate in a Wide Temperature Range.
    Chauhan V; Wang BX; Ye ZG
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrahigh Energy Storage Density and Efficiency in Orthorhombic PLZST Antiferroelectric Ceramics via Composition Regulation.
    Wang X; Sun H; Zhao H; Wang G; Li Y; Tang M; Xu R; Feng Y; Wei X; Xu Z
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17787-17796. PubMed ID: 38533892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Well-defined double hysteresis loop in NaNbO
    Luo N; Ma L; Luo G; Xu C; Rao L; Chen Z; Cen Z; Feng Q; Chen X; Toyohisa F; Zhu Y; Hong J; Li JF; Zhang S
    Nat Commun; 2023 Mar; 14(1):1776. PubMed ID: 36997552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving Remarkable Amplification of Energy-Storage Density in Two-Step Sintered NaNbO
    Xie A; Qi H; Zuo R
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19467-19475. PubMed ID: 32250098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Energy Storage Property of La-Doped PZT Films Within a Wide Temperature Range.
    Qiao X; Zhang H; Guo T; Geng W; Chou X
    ACS Omega; 2024 Feb; 9(5):5780-5787. PubMed ID: 38343983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible electric-field-induced phase transition in Ca-modified NaNbO
    Aso S; Matsuo H; Noguchi Y
    Sci Rep; 2023 Apr; 13(1):6771. PubMed ID: 37186239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Energy Storage Density of Lead Lutetium Niobate Crystals by Electric Field-Induced Secondary Phase Transition
    Yang X; Zhuo F; Wang Z; Lv L; Liu Y; He C; Long X
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28239-28245. PubMed ID: 32496036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.