These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36507231)

  • 1. Framework for Bidirectional Knowledge-Based Maintenance of Wind Turbines.
    Vives J; Palaci J; Heart J
    Comput Intell Neurosci; 2022; 2022():1020400. PubMed ID: 36507231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence and 3D Scanning Laser Combination for Supervision and Fault Diagnostics.
    Vives J; Palací J
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent fault detection scheme for constant-speed wind turbines based on improved multiscale fuzzy entropy and adaptive chaotic Aquila optimization-based support vector machine.
    Wang Z; Li G; Yao L; Cai Y; Lin T; Zhang J; Dong H
    ISA Trans; 2023 Jul; 138():582-602. PubMed ID: 36966057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibration Analysis for Fault Detection of Wind Turbine Drivetrains-A Comprehensive Investigation.
    Teng W; Ding X; Tang S; Xu J; Shi B; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Pass Filtering Empirical Wavelet Transform Machine Learning Based Fault Diagnosis for Combined Fault of Wind Turbines.
    Xiao Y; Xue J; Li M; Yang W
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Probabilistic Bayesian Parallel Deep Learning Framework for Wind Turbine Bearing Fault Diagnosis.
    Meng L; Su Y; Kong X; Lan X; Li Y; Xu T; Ma J
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Model-Agnostic Meta-Baseline Method for Few-Shot Fault Diagnosis of Wind Turbines.
    Liu X; Teng W; Liu Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration Analysis for Fault Detection of Wind Turbines by Combining Machine-Learning Techniques and 3D Scanning Laser.
    Vives J; Roses Albert E; Quiles E; Palací J; Fuster T
    Comput Intell Neurosci; 2022; 2022():2093086. PubMed ID: 36601275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Fault Detection and Classification of Wind Turbines Using Stacking Classifier.
    Waqas Khan P; Byun YC
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fault diagnosis and prediction of wind turbine gearbox based on a new hybrid model.
    Wang H; Zhao X; Wang W
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24506-24520. PubMed ID: 36344885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compound Fault Diagnosis of a Wind Turbine Gearbox Based on MOMEDA and Parallel Parameter Optimized Resonant Sparse Decomposition.
    Feng Y; Zhang X; Jiang H; Li J
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine.
    Yeh CH; Lin MH; Lin CH; Yu CE; Chen MJ
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30965619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspects of structural health and condition monitoring of offshore wind turbines.
    Antoniadou I; Dervilis N; Papatheou E; Maguire AE; Worden K
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines.
    Xiang L; Su H; Li Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines.
    Gao L; Hu H
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34635597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An SVM-based solution for fault detection in wind turbines.
    Santos P; Villa LF; Reñones A; Bustillo A; Maudes J
    Sensors (Basel); 2015 Mar; 15(3):5627-48. PubMed ID: 25760051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential impacts of floating wind turbine technology for marine species and habitats.
    Maxwell SM; Kershaw F; Locke CC; Conners MG; Dawson C; Aylesworth S; Loomis R; Johnson AF
    J Environ Manage; 2022 Apr; 307():114577. PubMed ID: 35091240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint High-Order Synchrosqueezing Transform and Multi-Taper Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions.
    Hu Y; Tu X; Li F; Meng G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29316668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Misalignment Fault Diagnosis for Wind Turbines Based on Information Fusion.
    Xiao Y; Xue J; Zhang L; Wang Y; Li M
    Entropy (Basel); 2021 Feb; 23(2):. PubMed ID: 33672527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing wind turbine avoidance behaviour of a migrating soaring bird.
    Santos CD; Ramesh H; Ferraz R; Franco AMA; Wikelski M
    Sci Rep; 2022 Apr; 12(1):6441. PubMed ID: 35440704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.