BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36507852)

  • 1. Deterministic Quantum Light Arrays from Giant Silica-Shelled Quantum Dots.
    Nguyen HA; Sharp D; Fröch JE; Cai YY; Wu S; Monahan M; Munley C; Manna A; Majumdar A; Kagan CR; Cossairt BM
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4294-4302. PubMed ID: 36507852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.
    Chandrasekaran V; Tessier MD; Dupont D; Geiregat P; Hens Z; Brainis E
    Nano Lett; 2017 Oct; 17(10):6104-6109. PubMed ID: 28895398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal Quantum Dots as Platforms for Quantum Information Science.
    Kagan CR; Bassett LC; Murray CB; Thompson SM
    Chem Rev; 2021 Mar; 121(5):3186-3233. PubMed ID: 33372773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doping MAPbBr
    Baronnier J; Houel J; Dujardin C; Kulzer F; Mahler B
    Nanoscale; 2022 Apr; 14(15):5769-5781. PubMed ID: 35352077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures.
    Au TH; Buil S; Quélin X; Hermier JP; Lai ND
    Nanoscale Adv; 2019 Aug; 1(8):3225-3231. PubMed ID: 36133591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot.
    Zhang Q; Dang C; Urabe H; Wang J; Sun S; Nurmikko A
    Opt Express; 2008 Nov; 16(24):19592-9. PubMed ID: 19030046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterministic Positioning of Colloidal Quantum Dots on Silicon Nitride Nanobeam Cavities.
    Chen Y; Ryou A; Friedfeld MR; Fryett T; Whitehead J; Cossairt BM; Majumdar A
    Nano Lett; 2018 Oct; 18(10):6404-6410. PubMed ID: 30251868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots.
    Goryacheva OA; Wegner KD; Sobolev AM; Häusler I; Gaponik N; Goryacheva IY; Resch-Genger U
    Anal Bioanal Chem; 2022 Jun; 414(15):4427-4439. PubMed ID: 35303136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield.
    Nasilowski M; Spinicelli P; Patriarche G; Dubertret B
    Nano Lett; 2015 Jun; 15(6):3953-8. PubMed ID: 25990468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strongly Confined CsPbBr
    Boehme SC; Bodnarchuk MI; Burian M; Bertolotti F; Cherniukh I; Bernasconi C; Zhu C; Erni R; Amenitsch H; Naumenko D; Andrusiv H; Semkiv N; John RA; Baldwin A; Galkowski K; Masciocchi N; Stranks SD; Rainò G; Guagliardi A; Kovalenko MV
    ACS Nano; 2023 Feb; 17(3):2089-2100. PubMed ID: 36719353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Characteristics of ZnS Passivated CdSe/CdS Quantum Dots for High Photostability and Lasing.
    Wang X; Yu J; Chen R
    Sci Rep; 2018 Nov; 8(1):17323. PubMed ID: 30470827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonblinking Colloidal Quantum Dots via Efficient Multiexciton Emission.
    Xie M; Tao CL; Zhang Z; Liu H; Wan S; Nie Y; Yang W; Wang X; Wu XJ; Tian Y
    J Phys Chem Lett; 2022 Mar; 13(10):2371-2378. PubMed ID: 35254074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles.
    Dey S; Zhou Y; Tian X; Jenkins JA; Chen O; Zou S; Zhao J
    Nanoscale; 2015 Apr; 7(15):6851-8. PubMed ID: 25806486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications.
    Zhao H; Liu J; Vidal F; Vomiero A; Rosei F
    Nanoscale; 2018 Sep; 10(36):17189-17197. PubMed ID: 30191225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced technologies for quantum photonic devices based on epitaxial quantum dots.
    Zhao TM; Chen Y; Yu Y; Li Q; Davanco M; Liu J
    Adv Quantum Technol; 2020 Feb; 3(2):. PubMed ID: 36452403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission.
    Sapienza L; Davanço M; Badolato A; Srinivasan K
    Nat Commun; 2015 Jul; 6():7833. PubMed ID: 26211442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shell thickness effects on quantum dot brightness and energy transfer.
    Chern M; Nguyen TT; Mahler AH; Dennis AM
    Nanoscale; 2017 Nov; 9(42):16446-16458. PubMed ID: 29063928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters.
    Jang EP; Han CY; Lim SW; Jo JH; Jo DY; Lee SH; Yoon SY; Yang H
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46062-46069. PubMed ID: 31746194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses.
    Shi J; Sun W; Utzat H; Farahvash A; Gao FY; Zhang Z; Barotov U; Willard AP; Nelson KA; Bawendi MG
    Nat Nanotechnol; 2021 Dec; 16(12):1355-1361. PubMed ID: 34811550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.