BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36507922)

  • 1. DESIGN, ANALYSIS, AND PROTOTYPING OF A NOVEL SINGLE DEGREE-OF-FREEDOM INDEX FINGER EXOSKELETON MECHANISM.
    Xu W; Liu Y; Ben-Tzvi P
    Proc ASME Des Eng Tech Conf; 2022 Aug; 7():. PubMed ID: 36507922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Novel Low-profile Robotic Exoskeleton Glove for Patients with Brachial Plexus Injuries.
    Xu W; Liu Y; Ben-Tzvi P
    Rep U S; 2022 Oct; 2022():11121-11126. PubMed ID: 37293247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Experimental Evaluation of a Novel Portable Haptic Robotic Exoskeleton Glove System for Patients with Brachial Plexus Injuries.
    Xu W; Guo Y; Bravo C; Ben-Tzvi P
    Rep U S; 2022 Oct; 2022():11115-11120. PubMed ID: 37303849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable Grasp Control With a Robotic Exoskeleton Glove.
    Vanteddu T; Ben-Tzvi P
    J Mech Robot; 2020 Dec; 12(6):061015. PubMed ID: 34168720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, Control, and Experimental Evaluation of A Novel Robotic Glove System for Patients with Brachial Plexus Injuries.
    Xu W; Guo Y; Bravo C; Ben-Tzvi P
    IEEE Trans Robot; 2023 Apr; 39(2):1637-1652. PubMed ID: 37035529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A NOVEL DESIGN OF A ROBOTIC GLOVE SYSTEM FOR PATIENTS WITH BRACHIAL PLEXUS INJURIES.
    Xu W; Pradhan S; Guo Y; Bravo C; Ben-Tzvi P
    Proc ASME Des Eng Tech Conf; 2020 Aug; 10():. PubMed ID: 36479635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A SERIES ELASTIC ACTUATOR DESIGN AND CONTROL IN A LINKAGE BASED HAND EXOSKELETON.
    Chauhan RJ; Ben-Tzvi P
    Proc ASME Dyn Syst Control Conf; 2019 Oct; 2019(3):. PubMed ID: 32030310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a thumb module for the FINGER rehabilitation robot.
    Wolbrecht ET; Morse KJ; Perry JC; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():582-585. PubMed ID: 28268397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Validation of a Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation.
    Sun N; Li G; Cheng L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1513-1523. PubMed ID: 34270428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single degree-of-freedom exoskeleton mechanism design for thumb rehabilitation.
    Yihun Y; Miklos R; Perez-Gracia A; Reinkensmeyer DJ; Denney K; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1916-20. PubMed ID: 23366289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a multi-DoF transhumeral robotic arm prosthesis.
    Bandara DSV; Gopura RARC; Hemapala KTMU; Kiguchi K
    Med Eng Phys; 2017 Oct; 48():131-141. PubMed ID: 28728864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Compact and Lightweight Rehabilitative Exoskeleton to Restore Grasping Functions for People with Hand Paralysis.
    Nazari V; Pouladian M; Zheng YP; Alam M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical design and feasibility of a finger exoskeleton to support finger extension of severely affected stroke patients.
    Haarman CJW; Hekman EEG; Rietman JS; Van Der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37022826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Compliant, Underactuated Finger for Anthropomorphic Hands.
    Kontoudis GP; Liarokapis M; Vamvoudakis KG
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():682-688. PubMed ID: 31374710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jointless structure and under-actuation mechanism for compact hand exoskeleton.
    In H; Cho KJ; Kim K; Lee B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975394. PubMed ID: 22275598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Prototyping of an Underactuated Hand Exoskeleton With Fingers Coupled by a Gear-Based Differential.
    Dragusanu M; Troisi D; Villani A; Prattichizzo D; Malvezzi M
    Front Robot AI; 2022; 9():862340. PubMed ID: 35425814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.