These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36508097)

  • 1. Hotspots analysis and perspectives of Prussian blue analogues (PBAs) in environment and energy in recent 20 years by CiteSpace.
    Du X; Hou Y
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11141-11174. PubMed ID: 36508097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy storage materials derived from Prussian blue analogues.
    Ma F; Li Q; Wang T; Zhang H; Wu G
    Sci Bull (Beijing); 2017 Mar; 62(5):358-368. PubMed ID: 36659421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future.
    Peng J; Zhang W; Liu Q; Wang J; Chou S; Liu H; Dou S
    Adv Mater; 2022 Apr; 34(15):e2108384. PubMed ID: 34918850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis.
    Niu L; Zhao X; Wu F; Tang Z; Lv H; Wang J; Fang M; Giesy JP
    Sci Total Environ; 2021 Aug; 783():146838. PubMed ID: 33865146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries.
    Xu C; Yang Z; Zhang X; Xia M; Yan H; Li J; Yu H; Zhang L; Shu J
    Nanomicro Lett; 2021 Aug; 13(1):166. PubMed ID: 34351516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prussian Blue Analogs for Rechargeable Batteries.
    Wang B; Han Y; Wang X; Bahlawane N; Pan H; Yan M; Jiang Y
    iScience; 2018 May; 3():110-133. PubMed ID: 30428315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues.
    Li WJ; Han C; Cheng G; Chou SL; Liu HK; Dou SX
    Small; 2019 Aug; 15(32):e1900470. PubMed ID: 30977287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites-A Review.
    Cui D; Wang R; Qian C; Shen H; Xia J; Sun K; Liu H; Guo C; Li J; Yu F; Bao W
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prussian Blue Analogues for Sodium-Ion Battery Cathodes: A Review of Mechanistic Insights, Current Challenges, and Future Pathways.
    Xiao Y; Xiao J; Zhao H; Li J; Zhang G; Zhang D; Guo X; Gao H; Wang Y; Chen J; Wang G; Liu H
    Small; 2024 Aug; 20(35):e2401957. PubMed ID: 38682730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Self-Assembly of Core-Shell Multimetal Prussian Blue Analogues for High-Performance Sodium-Ion Batteries.
    Yin J; Shen Y; Li C; Fan C; Sun S; Liu Y; Peng J; Qing L; Han J
    ChemSusChem; 2019 Nov; 12(21):4786-4790. PubMed ID: 31448557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Entropy Prussian Blue Analogues and Their Oxide Family as Sulfur Hosts for Lithium-Sulfur Batteries.
    Du M; Geng P; Pei C; Jiang X; Shan Y; Hu W; Ni L; Pang H
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202209350. PubMed ID: 36006780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis.
    Song X; Song S; Wang D; Zhang H
    Small Methods; 2021 Apr; 5(4):e2001000. PubMed ID: 34927855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From lab to field: Prussian blue frameworks as sustainable cathode materials.
    Anil Kumar Y; Sana SS; Ramachandran T; Assiri MA; Srinivasa Rao S; Kim SC
    Dalton Trans; 2024 Jul; 53(26):10770-10804. PubMed ID: 38859722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell shaped Ni
    Wu S; Feng Q; Zhou S; Zhao H; Xu X; Su Q; Wang Y; Sun Y; Yang Q
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34311450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bibliometric analysis of IgG4-related disease research from 2003 to 2022 based on Web of Science Core Collection Databases.
    Lv Z; Wu L; Lu Y; Liu S; Li Q
    Clin Rheumatol; 2023 Jan; 42(1):15-27. PubMed ID: 36121577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of the current status and research trends of biochar research - A scientific bibliometric analysis based on global research achievements from 2003 to 2023.
    Yang T; Zhang Z; Zhu W; Meng LY
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):83071-83092. PubMed ID: 37338685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Trends and Research Hotspots of Exercise for Intervening Diabetes: A Bibliometric Analysis.
    Zhang Z; Zhu Y; Wang Q; Chang T; Liu C; Zhu Y; Wang X; Cao X
    Front Public Health; 2022; 10():902825. PubMed ID: 35875005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Trends and Hotspots in Research on Rehabilitation Robots: A Bibliometric Analysis From 2010 to 2020.
    Xue X; Yang X; Deng Z; Tu H; Kong D; Li N; Xu F
    Front Public Health; 2021; 9():806723. PubMed ID: 35087788
    [No Abstract]   [Full Text] [Related]  

  • 19. Element screening of metal sites in Fe-based Prussian blue framework materials for ammonium ion battery applications: a first-principles study.
    Zhang Y; Xing J; Zhang B; Tong L; Fu X
    Phys Chem Chem Phys; 2024 Jan; 26(3):2387-2394. PubMed ID: 38168687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bibliometric analysis of global research trends on male osteoporosis: a neglected field deserves more attention.
    Wu H; Sun Z; Tong L; Wang Y; Yan H; Sun Z
    Arch Osteoporos; 2021 Oct; 16(1):154. PubMed ID: 34632530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.