BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36508417)

  • 21. Dyscoordination of non-rapid eye movement sleep oscillations in autism spectrum disorder.
    Mylonas D; Machado S; Larson O; Patel R; Cox R; Vangel M; Maski K; Stickgold R; Manoach DS
    Sleep; 2022 Mar; 45(3):. PubMed ID: 35022792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-Frequency Slow Oscillation-Spindle Coupling in a Biophysically Realistic Thalamocortical Neural Mass Model.
    Jajcay N; Cakan C; Obermayer K
    Front Comput Neurosci; 2022; 16():769860. PubMed ID: 35603132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans.
    Niknazar M; Krishnan GP; Bazhenov M; Mednick SC
    PLoS One; 2015; 10(12):e0144720. PubMed ID: 26671283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy.
    Jaramillo V; Schoch SF; Markovic A; Kohler M; Huber R; Lustenberger C; Kurth S
    Neuroimage; 2023 Apr; 269():119924. PubMed ID: 36739104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential.
    Marshall L; Mölle M; Born J
    Neuroscience; 2003; 121(4):1047-53. PubMed ID: 14580954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human Spindle Variability.
    Gonzalez C; Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2022 Jun; 42(22):4517-4537. PubMed ID: 35477906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal association between sleep spindles and ripples in the human anterior and mediodorsal thalamus.
    Szalárdy O; Simor P; Ujma PP; Jordán Z; Halász L; Erőss L; Fabó D; Bódizs R
    Eur J Neurosci; 2024 Feb; 59(4):641-661. PubMed ID: 38221670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations.
    Wei Y; Krishnan GP; Bazhenov M
    J Neurosci; 2016 Apr; 36(15):4231-47. PubMed ID: 27076422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights on auditory closed-loop stimulation targeting sleep spindles in slow oscillation up-states.
    Ngo HV; Seibold M; Boche DC; Mölle M; Born J
    J Neurosci Methods; 2019 Mar; 316():117-124. PubMed ID: 30194953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles.
    Ferrarelli F; Peterson MJ; Sarasso S; Riedner BA; Murphy MJ; Benca RM; Bria P; Kalin NH; Tononi G
    Am J Psychiatry; 2010 Nov; 167(11):1339-48. PubMed ID: 20843876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional reorganization in thalamocortical networks: transition between spindling and delta sleep rhythms.
    Terman D; Bose A; Kopell N
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15417-22. PubMed ID: 8986826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal associations between sleep slow oscillations, spindles and ripples.
    Oyanedel CN; Durán E; Niethard N; Inostroza M; Born J
    Eur J Neurosci; 2020 Dec; 52(12):4762-4778. PubMed ID: 32654249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.
    Mölle M; Eschenko O; Gais S; Sara SJ; Born J
    Eur J Neurosci; 2009 Mar; 29(5):1071-81. PubMed ID: 19245368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thalamocortical and intracortical laminar connectivity determines sleep spindle properties.
    Krishnan GP; Rosen BQ; Chen JY; Muller L; Sejnowski TJ; Cash SS; Halgren E; Bazhenov M
    PLoS Comput Biol; 2018 Jun; 14(6):e1006171. PubMed ID: 29949575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primate somatosensory cortical neurons are entrained to both spontaneous and peripherally evoked spindle oscillations.
    Sritharan SY; Contreras-Hernández E; Richardson AG; Lucas TH
    J Neurophysiol; 2020 Jan; 123(1):300-307. PubMed ID: 31800329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chaos in memory function of sleep: A nonlinear dynamical analysis in thalamocortical study.
    Foroutannia A; Nazarimehr F; Ghasemi M; Jafari S
    J Theor Biol; 2021 Nov; 528():110837. PubMed ID: 34273361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.