These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36508546)

  • 41. The elaborate structure of spider silk: structure and function of a natural high performance fiber.
    Römer L; Scheibel T
    Prion; 2008; 2(4):154-61. PubMed ID: 19221522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioinspired Polyurethane Using Multifunctional Block Modules with Synergistic Dynamic Bonds.
    Wang F; Yang Z; Li J; Zhang C; Sun P
    ACS Macro Lett; 2021 May; 10(5):510-517. PubMed ID: 35570774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functionalization and Reinforcement of Recombinant Spider Dragline Silk Fibers by Confined Nanoparticle Formation.
    Cheng J; Hu CF; Gan CY; Xia XX; Qian ZG
    ACS Biomater Sci Eng; 2022 Aug; 8(8):3299-3309. PubMed ID: 35820196
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical fibers for water collection inspired by spider silk.
    Chen W; Guo Z
    Nanoscale; 2019 Sep; 11(33):15448-15463. PubMed ID: 31403148
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter.
    Madurga R; Plaza GR; Blackledge TA; Guinea GV; Elices M; Pérez-Rigueiro J
    Sci Rep; 2016 Jan; 6():18991. PubMed ID: 26755434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. General Methods to Produce and Assemble Recombinant Spider Silk Proteins.
    Kong N
    Methods Mol Biol; 2021; 2347():57-67. PubMed ID: 34472055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioinspired Fibers with Controlled Wettability: From Spinning to Application.
    Shi R; Tian Y; Wang L
    ACS Nano; 2021 May; 15(5):7907-7930. PubMed ID: 33909405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomimetic nuclear lamin fibers with remarkable toughness and stiffness.
    Khayat M; Deri S; Wolf D; Trigano T; Medalia O; Ben-Harush K
    Int J Biol Macromol; 2020 Nov; 163():2060-2067. PubMed ID: 32961198
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioinspired Silk Fiber Spinning System via Automated Track-Drawing.
    Jao D; Hu X; Beachley V
    ACS Appl Bio Mater; 2021 Dec; 4(12):8192-8204. PubMed ID: 35005928
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ex vivo rheology of spider silk.
    Kojić N; Bico J; Clasen C; McKinley GH
    J Exp Biol; 2006 Nov; 209(Pt 21):4355-62. PubMed ID: 17050850
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spider (Linothele megatheloides) and silkworm (Bombyx mori) silks: Comparative physical and biological evaluation.
    Yang Y; Greco G; Maniglio D; Mazzolai B; Migliaresi C; Pugno N; Motta A
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110197. PubMed ID: 31761195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Osteoinductive recombinant silk fusion proteins for bone regeneration.
    Dinjaski N; Plowright R; Zhou S; Belton DJ; Perry CC; Kaplan DL
    Acta Biomater; 2017 Feb; 49():127-139. PubMed ID: 27940162
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of Skin Layers on Mechanical Properties and Supercontraction of Spider Dragline Silk Fiber.
    Yazawa K; Malay AD; Masunaga H; Numata K
    Macromol Biosci; 2019 Mar; 19(3):e1800220. PubMed ID: 30230228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements.
    Mohammadi P; Aranko AS; Landowski CP; Ikkala O; Jaudzems K; Wagermaier W; Linder MB
    Sci Adv; 2019 Sep; 5(9):eaaw2541. PubMed ID: 31548982
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oriented nucleation of hydroxylapatite crystals on spider dragline silks.
    Cao B; Mao C
    Langmuir; 2007 Oct; 23(21):10701-5. PubMed ID: 17850102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication and Characterization of Recombinant Silk-Elastin-Like-Protein (SELP) Fiber.
    Roberts EG; Rim NG; Huang W; Tarakanova A; Yeo J; Buehler MJ; Kaplan DL; Wong JY
    Macromol Biosci; 2018 Dec; 18(12):e1800265. PubMed ID: 30417967
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Processing and Modification of Recombinant Spider Silk Proteins].
    Liu B; Wang T; Liu X; Luo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Aug; 32(4):933-9. PubMed ID: 26710473
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.
    McDougall C; Woodcroft BJ; Degnan BM
    PLoS One; 2016; 11(7):e0159128. PubMed ID: 27415783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proline and processing of spider silks.
    Liu Y; Sponner A; Porter D; Vollrath F
    Biomacromolecules; 2008 Jan; 9(1):116-21. PubMed ID: 18052126
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silk and Silk-Like Supramolecular Materials.
    Fink TD; Zha RH
    Macromol Rapid Commun; 2018 Sep; 39(17):e1700834. PubMed ID: 29457296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.