BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36508672)

  • 21. Proteomic, toxicological and immunogenic characterization of Mexican west-coast rattlesnake (Crotalus basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (Crotalus simus).
    Segura Á; Herrera M; Reta Mares F; Jaime C; Sánchez A; Vargas M; Villalta M; Gómez A; Gutiérrez JM; León G
    J Proteomics; 2017 Mar; 158():62-72. PubMed ID: 28238904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Venom composition of adult Western Diamondback Rattlesnakes (Crotalus atrox) maintained under controlled diet and environmental conditions shows only minor changes.
    Rex CJ; Mackessy SP
    Toxicon; 2019 Jun; 164():51-60. PubMed ID: 30954451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The binding effectiveness of anti-r-disintegrin polyclonal antibodies against disintegrins and PII and PIII metalloproteases: An immunological survey of type A, B and A+B venoms from Mohave rattlesnakes.
    Cantú E; Mallela S; Nyguen M; Báez R; Parra V; Johnson R; Wilson K; Suntravat M; Lucena S; Rodríguez-Acosta A; Sánchez EE
    Comp Biochem Physiol C Toxicol Pharmacol; 2017 Jan; 191():168-176. PubMed ID: 27989783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Full sequencing and comparison of five venom metalloproteases of Trimeresurus gracilis: The PI-enzyme is most similar to okinalysin but the PIII-enzyme is most similar to Crotalus venom enzymes.
    Tsai TS; Tsai IH
    Toxicon; 2023 Mar; 225():107053. PubMed ID: 36758773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Deep Origin and Recent Loss of Venom Toxin Genes in Rattlesnakes.
    Dowell NL; Giorgianni MW; Kassner VA; Selegue JE; Sanchez EE; Carroll SB
    Curr Biol; 2016 Sep; 26(18):2434-2445. PubMed ID: 27641771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.
    Smith CF; Mackessy SP
    Toxicon; 2016 Sep; 120():110-23. PubMed ID: 27496060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam.
    Pla D; Petras D; Saviola AJ; Modahl CM; Sanz L; Pérez A; Juárez E; Frietze S; Dorrestein PC; Mackessy SP; Calvete JJ
    J Proteomics; 2018 Mar; 174():71-84. PubMed ID: 29292096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Snakes on a plain: biotic and abiotic factors determine venom compositional variation in a wide-ranging generalist rattlesnake.
    Smith CF; Nikolakis ZL; Ivey K; Perry BW; Schield DR; Balchan NR; Parker J; Hansen KC; Saviola AJ; Castoe TA; Mackessy SP
    BMC Biol; 2023 Jun; 21(1):136. PubMed ID: 37280596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Rokyta DR; Lemmon AR; Margres MJ; Aronow K
    BMC Genomics; 2012 Jul; 13():312. PubMed ID: 23025625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between clinics and the venom of the causative Amazon pit viper (Bothrops atrox).
    Moura-da-Silva AM; Contreras-Bernal JC; Cirilo Gimenes SN; Freitas-de-Sousa LA; Portes-Junior JA; da Silva Peixoto P; Kei Iwai L; Mourão de Moura V; Ferreira Bisneto P; Lacerda M; Mendonça da Silva I; de Lima Ferreira LC; Silva de Oliveira S; Hui Wen F; de Almeida Gonçalves Sachett J; Monteiro WM
    PLoS Negl Trop Dis; 2020 Jun; 14(6):e0008299. PubMed ID: 32511239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the immunogenicity and antigenic composition of ten Central American snake venoms.
    Anderson SG; Gutiérrez JM; Ownby CL
    Toxicon; 1993 Aug; 31(8):1051-9. PubMed ID: 8212043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial expression of a snake venom metalloproteinase inhibitory protein from the North American opossum (D.virginiana).
    Werner RM; Miling LM; Elliott BM; Hawes MR; Wickens JM; Webber DE
    Toxicon; 2021 Apr; 194():1-10. PubMed ID: 33581173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins.
    Biardi JE; Chien DC; Coss RG
    J Chem Ecol; 2006 Jan; 32(1):137-54. PubMed ID: 16525875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Venom Composition of the Snake Tribe Philodryadini: 'Omic' Techniques Reveal Intergeneric Variability among South American Racers.
    Tioyama EC; Bayona-Serrano JD; Portes-Junior JA; Nachtigall PG; de Souza VC; Beraldo-Neto E; Grazziotin FG; Junqueira-de-Azevedo ILM; Moura-da-Silva AM; Freitas-de-Sousa LA
    Toxins (Basel); 2023 Jun; 15(7):. PubMed ID: 37505684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. No safety in the trees: Local and species-level adaptation of an arboreal squirrel to the venom of sympatric rattlesnakes.
    Pomento AM; Perry BW; Denton RD; Gibbs HL; Holding ML
    Toxicon; 2016 Aug; 118():149-55. PubMed ID: 27158112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families.
    Strickland JL; Mason AJ; Rokyta DR; Parkinson CL
    Toxins (Basel); 2018 Mar; 10(4):. PubMed ID: 29570631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CatroxMP-II: a heme-modulated fibrinogenolytic metalloproteinase isolated from Crotalus atrox venom.
    Suntravat M; Langlais PR; Sánchez EE; Nielsen VG
    Biometals; 2018 Aug; 31(4):585-593. PubMed ID: 29761254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactivation of phospholipase A2 and metalloproteinase from Crotalus atrox venom by direct current.
    Panfoli I; Ravera S; Calzia D; Dazzi E; Gandolfo S; Pepe IM; Morelli A
    J Biochem Mol Toxicol; 2007; 21(1):7-12. PubMed ID: 17366544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting.
    Serrano SM; Kim J; Wang D; Dragulev B; Shannon JD; Mann HH; Veit G; Wagener R; Koch M; Fox JW
    J Biol Chem; 2006 Dec; 281(52):39746-56. PubMed ID: 17040908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico.
    Borja M; Neri-Castro E; Castañeda-Gaytán G; Strickland JL; Parkinson CL; Castañeda-Gaytán J; Ponce-López R; Lomonte B; Olvera-Rodríguez A; Alagón A; Pérez-Morales R
    Toxins (Basel); 2018 Jan; 10(1):. PubMed ID: 29316683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.