These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36508708)

  • 21. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio.
    Mitra S; Evans G
    Front Chem; 2018; 6():259. PubMed ID: 30013967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Leidenfrost Effect: Relevant Time and Length Scales.
    Shirota M; van Limbeek MA; Sun C; Prosperetti A; Lohse D
    Phys Rev Lett; 2016 Feb; 116(6):064501. PubMed ID: 26918994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Length scale of Leidenfrost ratchet switches droplet directionality.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    Nanoscale; 2014 Aug; 6(15):9293-9. PubMed ID: 24986190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous Takeoff of Single Sulfur Nanoparticles during Sublimation Studied by Dark-Field Microscopy.
    Liu S; Li H; Fang S; Xu W; Hu W; Wang W
    J Am Chem Soc; 2023 Feb; ():. PubMed ID: 36763975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustically-controlled Leidenfrost droplets.
    Ng BT; Hung YM; Tan MK
    J Colloid Interface Sci; 2016 Mar; 465():26-32. PubMed ID: 26641561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of ambient pressure on Leidenfrost temperature.
    Orejon D; Sefiane K; Takata Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053012. PubMed ID: 25493886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing Boiling Heat Transfer on a Superheated Surface by Surfactant-Laden Droplets.
    Cai Z; Wang B; Liu S; Li H; Luo S; Dong Z; Wang Y
    Langmuir; 2022 Aug; 38(34):10375-10384. PubMed ID: 35980332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of Formation of a Vapor Nanobubble Around a Heated Nanoparticle.
    Maheshwari S; van der Hoef M; Prosperetti A; Lohse D
    J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(36):20571-20580. PubMed ID: 30245761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leidenfrost Effect as a Directed Percolation Phase Transition.
    Chantelot P; Lohse D
    Phys Rev Lett; 2021 Sep; 127(12):124502. PubMed ID: 34597096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Explosive, oscillatory, and Leidenfrost boiling at the nanoscale.
    Jollans T; Orrit M
    Phys Rev E; 2019 Jun; 99(6-1):063110. PubMed ID: 31330732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanobubbles around plasmonic nanoparticles: Thermodynamic analysis.
    Lombard J; Biben T; Merabia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043007. PubMed ID: 25974580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leidenfrost levitation: beyond droplets.
    Hashmi A; Xu Y; Coder B; Osborne PA; Spafford J; Michael GE; Yu G; Xu J
    Sci Rep; 2012; 2():797. PubMed ID: 23150770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanobubble formation on a warmer substrate.
    Xu C; Peng S; Qiao GG; Gutowski V; Lohse D; Zhang X
    Soft Matter; 2014 Oct; 10(39):7857-64. PubMed ID: 25156822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath.
    Gauthier A; Diddens C; Proville R; Lohse D; van der Meer D
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1174-1179. PubMed ID: 30617076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leidenfrost Self-Rewetting Drops.
    Ouenzerfi S; Harmand S; Schiffler J
    J Phys Chem B; 2018 May; 122(18):4922-4930. PubMed ID: 29672056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radial wettable gradient of hot surface to control droplets movement in directions.
    Feng S; Wang S; Tao Y; Shang W; Deng S; Zheng Y; Hou Y
    Sci Rep; 2015 May; 5():10067. PubMed ID: 25975722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Universality of oscillating boiling in Leidenfrost transition.
    Khavari M; Tran T
    Phys Rev E; 2017 Oct; 96(4-1):043102. PubMed ID: 29347618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rectification of Mobile Leidenfrost Droplets by Planar Ratchets.
    Li J; Zhou X; Zhang Y; Hao C; Zhao F; Li M; Tang H; Ye W; Wang Z
    Small; 2020 Mar; 16(9):e1901751. PubMed ID: 31231945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced fluctuation for pinned surface nanobubbles.
    Guo Z; Zhang X
    Phys Rev E; 2019 Nov; 100(5-1):052803. PubMed ID: 31869961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.