These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36509117)

  • 1. Adsorption of dyestuff by nano copper oxide coated alkali metakaoline geopolymer in monolith and powder forms: Kinetics, isotherms and microstructural analysis.
    Karuppaiyan J; Mullaimalar A; Jeyalakshmi R
    Environ Res; 2023 Feb; 218():115002. PubMed ID: 36509117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient eco-friendly adsorbent material based on waste copper slag-biomass ash geopolymer: dye sorption capacity and sustainable properties.
    Mullaimalar A; Thanigaiselvan R; Karuppaiyan J; Kiruthika S; Jeyalakshmi R; Albeshr MF
    Environ Geochem Health; 2024 Mar; 46(3):110. PubMed ID: 38460044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of geopolymers synthesized from incinerated municipal solid waste ashes for the removal of cationic dye from water.
    Al-Ghouti MA; Khan M; Nasser MS; Al Saad K; Ee Heng O
    PLoS One; 2020; 15(11):e0239095. PubMed ID: 33151952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel alkali activated magnesium silicate as an effective and mechanically strong adsorbent for methylene blue removal.
    Kaya-Özkiper K; Uzun A; Soyer-Uzun S
    J Hazard Mater; 2022 Feb; 424(Pt A):127256. PubMed ID: 34879543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the role of surface functional groups of metakaolin in the removal of methylene blue: Characterization, kinetics, modeling and RSM optimization.
    Karuppaiyan J; Jeyalakshmi R; Kiruthika S; Wadaan MA; Khan MF; Kim W
    Environ Res; 2023 Jun; 226():115604. PubMed ID: 36934864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect of adsorption and photo-catalysis on the removal of hazardous dyes using steam exploded banana fiber derived micro-cellulose.
    Saravanakumar R; Sathiyamoorthi E; Rajkumar S; Lee J; Kottaisamy M
    Int J Biol Macromol; 2024 Feb; 258(Pt 2):128970. PubMed ID: 38154723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nigella sativa seed based nanohybrid composite-Fe
    Siddiqui SI; Zohra F; Chaudhry SA
    Environ Res; 2019 Nov; 178():108667. PubMed ID: 31454728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of methylene blue dye from aqueous solution using an efficient chitosan-pectin bio-adsorbent: kinetics and isotherm studies.
    Mohrazi A; Ghasemi-Fasaei R
    Environ Monit Assess; 2023 Jan; 195(2):339. PubMed ID: 36705863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Metakaolin Based Alkali Activated Materials as an Adsorbent at Different Na
    Ibrahim M; Wan Ibrahim WM; Abdullah MMAB; Nabialek M; Putra Jaya R; Setkit M; Ahmad R; Jeż B
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and optimization of geopolymer adsorbent for water treatment: Application of mixture design approach.
    Aouan B; Alehyen S; Fadil M; El Alouani M; Saufi H; El Herradi EH; El Makhoukhi F; Taibi M
    J Environ Manage; 2023 Jul; 338():117853. PubMed ID: 37015145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and mechanisms of methylene blue removal by foxtail millet shell from aqueous water and reuse in biosorption of Pb(II), Cd(II), Cu(II), and Zn(II) for secondary times.
    He P; Liu J; Ren ZR; Zhang Y; Gao Y; Chen ZQ; Liu X
    Int J Phytoremediation; 2022; 24(4):350-363. PubMed ID: 34410866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient adsorption of Cd
    Lan T; Li P; Rehman FU; Li X; Yang W; Guo S
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33555-33567. PubMed ID: 31586316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers.
    Cheng CS; Deng J; Lei B; He A; Zhang X; Ma L; Li S; Zhao C
    J Hazard Mater; 2013 Dec; 263 Pt 2():467-78. PubMed ID: 24238475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost effective porous areca nut carbon nanospheres for adsorptive removal of dyes and their binary mixtures.
    Pathania D; Araballi A; Fernandes F; Shivanna JM; Sriram G; Kurkuri M; Hegde G; Aminabhavi TM
    Environ Res; 2023 May; 224():115521. PubMed ID: 36805895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater.
    Wu Z; Zhong H; Yuan X; Wang H; Wang L; Chen X; Zeng G; Wu Y
    Water Res; 2014 Dec; 67():330-44. PubMed ID: 25314573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron doped activated carbon for effective removal of tartrazine and methylene blue dye from the aquatic systems: Kinetics, isotherms, thermodynamics and desorption studies.
    Joshiba GJ; Kumar PS; Rangasamy G; Ngueagni PT; Pooja G; Balji GB; Alagumalai K; El-Serehy HA
    Environ Res; 2022 Dec; 215(Pt 3):114317. PubMed ID: 36174758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorptive removal of multiple organic dyes from wastewater using regenerative microporous carbon: Decisive role of surface-active sites, charge and size of dye molecules.
    Joshi P; Prolta A; Mehta S; Khan TS; Srivastava M; Khatri OP
    Chemosphere; 2022 Dec; 308(Pt 3):136433. PubMed ID: 36126740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of carboxymethyl starch with 2-carboxyethyl acrylate: A new sorbent for the wastewater remediation of methylene blue.
    Ullah N; Haq F; Farid A; Kiran M; Al Othman ZA; Aljuwayid AM; Habila MA; Bokhari A; Rajendran S; Khoo KS
    Environ Res; 2023 Feb; 219():115091. PubMed ID: 36529323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step modification towards enhancing the adsorption capacity of fly ash for both inorganic Cu(II) and organic methylene blue from aqueous solution.
    Jin H; Liu Y; Wang C; Lei X; Guo M; Cheng F; Zhang M
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36449-36461. PubMed ID: 30374711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.