These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36509677)

  • 1. Role of Dipolar Interactions on the Determination of the Effective Magnetic Anisotropy in Iron Oxide Nanoparticles.
    García-Acevedo P; González-Gómez MA; Arnosa-Prieto Á; de Castro-Alves L; Piñeiro Y; Rivas J
    Adv Sci (Weinh); 2023 Feb; 10(5):e2203397. PubMed ID: 36509677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia.
    Mamiya H; Fukumoto H; Cuya Huaman JL; Suzuki K; Miyamura H; Balachandran J
    ACS Nano; 2020 Jul; 14(7):8421-8432. PubMed ID: 32574042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: interplay between intrinsic properties and dipolar interactions.
    Hadadian Y; Ramos AP; Pavan TZ
    Sci Rep; 2019 Dec; 9(1):18048. PubMed ID: 31792227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of superparamagnetic relaxation with magnetic dipole interaction in capped iron-oxide nanoparticles.
    Landers J; Stromberg F; Darbandi M; Schöppner C; Keune W; Wende H
    J Phys Condens Matter; 2015 Jan; 27(2):026002. PubMed ID: 25502104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.
    Martinez-Boubeta C; Simeonidis K; Makridis A; Angelakeris M; Iglesias O; Guardia P; Cabot A; Yedra L; Estradé S; Peiró F; Saghi Z; Midgley PA; Conde-Leborán I; Serantes D; Baldomir D
    Sci Rep; 2013; 3():1652. PubMed ID: 23576006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach.
    Barrera G; Allia P; Tiberto P
    Nanoscale; 2021 Feb; 13(7):4103-4121. PubMed ID: 33570053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.
    Shah RR; Davis TP; Glover AL; Nikles DE; Brazel CS
    J Magn Magn Mater; 2015 Aug; 387():96-106. PubMed ID: 25960599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy.
    Mai BT; Balakrishnan PB; Barthel MJ; Piccardi F; Niculaes D; Marinaro F; Fernandes S; Curcio A; Kakwere H; Autret G; Cingolani R; Gazeau F; Pellegrino T
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5727-5739. PubMed ID: 30624889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia.
    Coral DF; Zélis PM; Marciello M; Morales Mdel P; Craievich A; Sánchez FH; van Raap MB
    Langmuir; 2016 Feb; 32(5):1201-13. PubMed ID: 26751761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye-doped biodegradable nanoparticle SiO
    Navarro-Palomares E; González-Saiz P; Renero-Lecuna C; Martín-Rodríguez R; Aguado F; González-Alonso D; Fernández Barquín L; González J; Bañobre-López M; Fanarraga ML; Valiente R
    Nanoscale; 2020 Mar; 12(10):6164-6175. PubMed ID: 32133463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications.
    Cotin G; Blanco-Andujar C; Perton F; Asín L; de la Fuente JM; Reichardt W; Schaffner D; Ngyen DV; Mertz D; Kiefer C; Meyer F; Spassov S; Ersen O; Chatzidakis M; Botton GA; Hénoumont C; Laurent S; Greneche JM; Teran FJ; Ortega D; Felder-Flesch D; Begin-Colin S
    Nanoscale; 2021 Sep; 13(34):14552-14571. PubMed ID: 34473175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendron based antifouling, MRI and magnetic hyperthermia properties of different shaped iron oxide nanoparticles.
    Cotin G; Blanco-Andujar C; Nguyen DV; Affolter C; Boutry S; Boos A; Ronot P; Uring-Lambert B; Choquet P; Zorn PE; Mertz D; Laurent S; Muller RN; Meyer F; Felder Flesch D; Begin-Colin S
    Nanotechnology; 2019 Sep; 30(37):374002. PubMed ID: 31195384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Obaidat IM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning of magnetic dipolar interactions of maghemite nanoparticles embedded in polyelectrolyte layer-by-layer films.
    Paterno LG; Sinnecker EH; Soler MA; Sinnecker JP; Novak MA; Morais PC
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6672-8. PubMed ID: 22962805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia.
    Papadopoulos C; Kolokithas-Ntoukas A; Moreno R; Fuentes D; Loudos G; Loukopoulos VC; Kagadis GC
    Med Phys; 2022 Jan; 49(1):547-567. PubMed ID: 34724215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders.
    Fleutot S; Nealon GL; Pauly M; Pichon BP; Leuvrey C; Drillon M; Gallani JL; Guillon D; Donnio B; Begin-Colin S
    Nanoscale; 2013 Feb; 5(4):1507-16. PubMed ID: 23306456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.
    Jiang C; Leung CW; Pong PW
    Nanoscale Res Lett; 2016 Dec; 11(1):189. PubMed ID: 27067737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Magnetization Reversal and Hyperthermia Efficiency in Core-Shell Iron-Iron Oxide Magnetic Nanoparticles by Tuning the Interphase Coupling.
    Simeonidis K; Martinez-Boubeta C; Serantes D; Ruta S; Chubykalo-Fesenko O; Chantrell R; Oró-Solé J; Balcells L; Kamzin AS; Nazipov RA; Makridis A; Angelakeris M
    ACS Appl Nano Mater; 2020 May; 3(5):4465-4476. PubMed ID: 32582880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Collective Magnetic Properties in 2D Monolayers of Iron Oxide Nanoparticles Favored by Local Order and Local 1D Shape Anisotropy.
    Toulemon D; Liu Y; Cattoën X; Leuvrey C; Bégin-Colin S; Pichon BP
    Langmuir; 2016 Feb; 32(6):1621-8. PubMed ID: 26807596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.