These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36509806)

  • 1. Automated analysis of fibrous cap in intravascular optical coherence tomography images of coronary arteries.
    Lee J; Pereira GTR; Gharaibeh Y; Kolluru C; Zimin VN; Dallan LAP; Kim JN; Hoori A; Al-Kindi SG; Guagliumi G; Bezerra HG; Wilson DL
    Sci Rep; 2022 Dec; 12(1):21454. PubMed ID: 36509806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning segmentation of fibrous cap in intravascular optical coherence tomography images.
    Lee J; Kim JN; Dallan LAP; Zimin VN; Hoori A; Hassani NS; Makhlouf MHE; Guagliumi G; Bezerra HG; Wilson DL
    Sci Rep; 2024 Feb; 14(1):4393. PubMed ID: 38388637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of Thin-Capped Fibroatheromas in Intravascular Optical Coherence Tomography Images: Effects of Light Scattering.
    Phipps JE; Hoyt T; Vela D; Wang T; Michalek JE; Buja LM; Jang IK; Milner TE; Feldman MD
    Circ Cardiovasc Interv; 2016 Jul; 9(7):. PubMed ID: 27406987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma.
    Brown AJ; Obaid DR; Costopoulos C; Parker RA; Calvert PA; Teng Z; Hoole SP; West NE; Goddard M; Bennett MR
    Circ Cardiovasc Imaging; 2015 Oct; 8(10):e003487. PubMed ID: 26429760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic microchannel detection using deep learning in intravascular optical coherence tomography images.
    Lee J; Kim JN; Pereira GTR; Gharaibeh Y; Kolluru C; Zimin VN; Dallan LAP; Motairek IK; Hoori A; Guagliumi G; Bezerra HG; Wilson DL
    Proc SPIE Int Soc Opt Eng; 2022; 12034():. PubMed ID: 36465096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated levels of systemic pentraxin 3 are associated with thin-cap fibroatheroma in coronary culprit lesions: assessment by optical coherence tomography and intravascular ultrasound.
    Koga S; Ikeda S; Yoshida T; Nakata T; Takeno M; Masuda N; Koide Y; Kawano H; Maemura K
    JACC Cardiovasc Interv; 2013 Sep; 6(9):945-54. PubMed ID: 23954061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plaque burden can be assessed using intravascular optical coherence tomography and a dedicated automated processing algorithm: a comparison study with intravascular ultrasound.
    Gerbaud E; Weisz G; Tanaka A; Luu R; Osman HASH; Baldwin G; Coste P; Cognet L; Waxman S; Zheng H; Moses JW; Mintz GS; Akasaka T; Maehara A; Tearney GJ
    Eur Heart J Cardiovasc Imaging; 2020 Jun; 21(6):640-652. PubMed ID: 31326995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study.
    Tian J; Ren X; Vergallo R; Xing L; Yu H; Jia H; Soeda T; McNulty I; Hu S; Lee H; Yu B; Jang IK
    J Am Coll Cardiol; 2014 Jun; 63(21):2209-16. PubMed ID: 24632266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Features of coronary plaque in patients with metabolic syndrome and diabetes mellitus assessed by 3-vessel optical coherence tomography.
    Yonetsu T; Kato K; Uemura S; Kim BK; Jang Y; Kang SJ; Park SJ; Lee S; Kim SJ; Jia H; Vergallo R; Abtahian F; Tian J; Hu S; Yeh RW; Sakhuja R; McNulty I; Lee H; Zhang S; Yu B; Kakuta T; Jang IK
    Circ Cardiovasc Imaging; 2013 Sep; 6(5):665-73. PubMed ID: 23922003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS.
    Miyamoto Y; Okura H; Kume T; Kawamoto T; Neishi Y; Hayashida A; Yamada R; Imai K; Saito K; Yoshida K
    JACC Cardiovasc Imaging; 2011 Jun; 4(6):638-46. PubMed ID: 21679899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Detection of Vulnerable Plaque for Intravascular Optical Coherence Tomography Images.
    Liu R; Zhang Y; Zheng Y; Liu Y; Zhao Y; Yi L
    Cardiovasc Eng Technol; 2019 Dec; 10(4):590-603. PubMed ID: 31535296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries.
    Fujii K; Kawasaki D; Masutani M; Okumura T; Akagami T; Sakoda T; Tsujino T; Ohyanagi M; Masuyama T
    JACC Cardiovasc Imaging; 2010 Feb; 3(2):168-75. PubMed ID: 20159644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonculprit Lesion Plaque Morphology in Patients With ST-Segment-Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys.
    Pinilla-Echeverri N; Mehta SR; Wang J; Lavi S; Schampaert E; Cantor WJ; Bainey KR; Welsh RC; Kassam S; Mehran R; Storey RF; Nguyen H; Meeks B; Wood DA; Cairns JA; Sheth T
    Circ Cardiovasc Interv; 2020 Jul; 13(7):e008768. PubMed ID: 32646305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What have we learned about plaque rupture in acute coronary syndromes?
    Choi SY; Mintz GS
    Curr Cardiol Rep; 2010 Jul; 12(4):338-43. PubMed ID: 20425160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of CD14
    Yamamoto H; Yoshida N; Shinke T; Otake H; Kuroda M; Sakaguchi K; Hirota Y; Toba T; Takahashi H; Terashita D; Uzu K; Tahara N; Shinkura Y; Kuroda K; Nagasawa Y; Nagano Y; Tsukiyama Y; Yanaka KI; Emoto T; Sasaki N; Yamashita T; Ogawa W; Hirata KI
    Atherosclerosis; 2018 Feb; 269():245-251. PubMed ID: 29407600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evaluation of fibrous cap thickness by optical coherence tomography for positive remodeling and low-attenuation plaques assessed by computed tomography angiography.
    Sato A; Hoshi T; Kakefuda Y; Hiraya D; Watabe H; Kawabe M; Akiyama D; Koike A; Aonuma K
    Int J Cardiol; 2015 Mar; 182():419-25. PubMed ID: 25596470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of coronary thin-cap fibroatheroma by intravascular ultrasound-based machine learning.
    Bae Y; Kang SJ; Kim G; Lee JG; Min HS; Cho H; Kang DY; Lee PH; Ahn JM; Park DW; Lee SW; Kim YH; Lee CW; Park SW; Park SJ
    Atherosclerosis; 2019 Sep; 288():168-174. PubMed ID: 31130215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming.
    Zahnd G; Karanasos A; van Soest G; Regar E; Niessen W; Gijsen F; van Walsum T
    Int J Comput Assist Radiol Surg; 2015 Sep; 10(9):1383-94. PubMed ID: 25740203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iMap-Intravascular Ultrasound Radiofrequency Signal Analysis Reflects Plaque Components of Optical Coherence Tomography-Derived Thin-Cap Fibroatheroma.
    Koga S; Ikeda S; Miura M; Yoshida T; Nakata T; Koide Y; Kawano H; Maemura K
    Circ J; 2015; 79(10):2231-7. PubMed ID: 26289833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the thickness of the fibrous cap by optical coherence tomography.
    Kume T; Akasaka T; Kawamoto T; Okura H; Watanabe N; Toyota E; Neishi Y; Sukmawan R; Sadahira Y; Yoshida K
    Am Heart J; 2006 Oct; 152(4):755.e1-4. PubMed ID: 16996853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.