These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. MXene Electrodes for All Strain-Free Solid-State Batteries. Kawai K; Lee H; Nomura Y; Fujita M; Kitaura H; Hosono E; Nakajima H; Tsukasaki H; Mori S; Sakuda A; Hayashi A; Yabuuchi N; Lee YM; Okubo M ACS Appl Mater Interfaces; 2024 Oct; 16(42):57377-57385. PubMed ID: 39382571 [TBL] [Abstract][Full Text] [Related]
3. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
4. Lin CC; Hsu CT; Liu W; Huang SC; Lin MH; Kortz U; Mougharbel AS; Chen TY; Hu CW; Lee JF; Wang CC; Liao YF; Li LJ; Li L; Peng S; Stimming U; Chen HY ACS Appl Mater Interfaces; 2020 Sep; 12(36):40296-40309. PubMed ID: 32841558 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical Lithiation/Delithiation of ZnO in 3D-Structured Electrodes: Elucidating the Mechanism and the Solid Electrolyte Interphase Formation. Kreissl JJA; Petit J; Oppermann R; Cop P; Gerber T; Joos M; Abert M; Tübke J; Miyazaki K; Abe T; Schröder D ACS Appl Mater Interfaces; 2021 Aug; 13(30):35625-35638. PubMed ID: 34309361 [TBL] [Abstract][Full Text] [Related]
6. Nanosized and metastable molybdenum oxides as negative electrode materials for durable high-energy aqueous Li-ion batteries. Yun J; Sagehashi R; Sato Y; Masuda T; Hoshino S; Rajendra HB; Okuno K; Hosoe A; Bandarenka AS; Yabuuchi N Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815337 [TBL] [Abstract][Full Text] [Related]
7. Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries. Cambaz MA; Vinayan BP; Euchner H; Pervez SA; Geßwein H; Braun T; Gross A; Fichtner M ACS Appl Mater Interfaces; 2019 Oct; 11(43):39848-39858. PubMed ID: 31589014 [TBL] [Abstract][Full Text] [Related]
8. Tracking the Chemical and Structural Evolution of the TiS Zhang L; Sun D; Kang J; Wang HT; Hsieh SH; Pong WF; Bechtel HA; Feng J; Wang LW; Cairns EJ; Guo J Nano Lett; 2018 Jul; 18(7):4506-4515. PubMed ID: 29856638 [TBL] [Abstract][Full Text] [Related]
9. A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries. Ohara M; Hameed AS; Kubota K; Katogi A; Chihara K; Hosaka T; Komaba S Chem Sci; 2021 Sep; 12(37):12383-12390. PubMed ID: 34603668 [TBL] [Abstract][Full Text] [Related]
10. Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO Surendran A; Enale H; Thottungal A; Sarapulova A; Knapp M; Nishanthi ST; Dixon D; Bhaskar A ACS Appl Mater Interfaces; 2022 Feb; 14(6):7856-7868. PubMed ID: 35107246 [TBL] [Abstract][Full Text] [Related]
11. Highly Stable Halide-Electrolyte-Based All-Solid-State Li-Se Batteries. Li X; Liang J; Kim JT; Fu J; Duan H; Chen N; Li R; Zhao S; Wang J; Huang H; Sun X Adv Mater; 2022 May; 34(20):e2200856. PubMed ID: 35365923 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Reaction Mechanism of the MoS Zhang L; Sun D; Kang J; Feng J; Bechtel HA; Wang LW; Cairns EJ; Guo J Nano Lett; 2018 Feb; 18(2):1466-1475. PubMed ID: 29327926 [TBL] [Abstract][Full Text] [Related]
13. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes. Kaushik S; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586 [TBL] [Abstract][Full Text] [Related]
14. Guest Ion-Dependent Reaction Mechanisms of New Pseudocapacitive Mg Fu Q; Schwarz B; Ding Z; Sarapulova A; Weidler PG; Missyul A; Etter M; Welter E; Hua W; Knapp M; Dsoke S; Ehrenberg H Adv Sci (Weinh); 2023 Apr; 10(11):e2207283. PubMed ID: 36794292 [TBL] [Abstract][Full Text] [Related]
15. Amorphization-Driven Lithium Ion Storage Mechanism Change for Anomalous Capacity Enhancement. Bak SE; Chung W; Abbas MA; Bang JH ACS Appl Mater Interfaces; 2023 Jul; 15(29):34874-34882. PubMed ID: 37436830 [TBL] [Abstract][Full Text] [Related]
16. Iron Sulfide Na Nasu A; Sakuda A; Kimura T; Deguchi M; Tsuchimoto A; Okubo M; Yamada A; Tatsumisago M; Hayashi A Small; 2022 Oct; 18(42):e2203383. PubMed ID: 36122184 [TBL] [Abstract][Full Text] [Related]
17. Study of the Lithium Storage Mechanism of N-Doped Carbon-Modified Cu Tian G; Huang C; Luo X; Zhao Z; Peng Y; Gao Y; Tang N; Dsoke S Chemistry; 2021 Oct; 27(55):13774-13782. PubMed ID: 34318954 [TBL] [Abstract][Full Text] [Related]
18. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Zhang Z; Avdeev M; Chen H; Yin W; Kan WH; He G Nat Commun; 2022 Dec; 13(1):7790. PubMed ID: 36526618 [TBL] [Abstract][Full Text] [Related]
19. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries. Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851 [TBL] [Abstract][Full Text] [Related]
20. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]