BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36510111)

  • 1. An RNA-targeting CRISPR-Cas13d system alleviates disease-related phenotypes in Huntington's disease models.
    Morelli KH; Wu Q; Gosztyla ML; Liu H; Yao M; Zhang C; Chen J; Marina RJ; Lee K; Jones KL; Huang MY; Li A; Smith-Geater C; Thompson LM; Duan W; Yeo GW
    Nat Neurosci; 2023 Jan; 26(1):27-38. PubMed ID: 36510111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease.
    Caron NS; Southwell AL; Brouwers CC; Cengio LD; Xie Y; Black HF; Anderson LM; Ko S; Zhu X; van Deventer SJ; Evers MM; Konstantinova P; Hayden MR
    Nucleic Acids Res; 2020 Jan; 48(1):36-54. PubMed ID: 31745548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the Mutant CAG Expansion in Huntingtin mRNA Interfere with Exonucleolytic Cleavage of its First Exon?
    Liu W; Pfister EL; Kennington LA; Chase KO; Mueller C; DiFiglia M; Aronin N
    J Huntingtons Dis; 2016; 5(1):33-8. PubMed ID: 27003665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular Analysis of Silencing the Huntington's Disease Gene Using AAV9 Mediated Delivery of Artificial Micro RNA into the Striatum of Q140/Q140 Mice.
    Keeler AM; Sapp E; Chase K; Sottosanti E; Danielson E; Pfister E; Stoica L; DiFiglia M; Aronin N; Sena-Esteves M
    J Huntingtons Dis; 2016 Oct; 5(3):239-248. PubMed ID: 27689620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels.
    Rué L; Bañez-Coronel M; Creus-Muncunill J; Giralt A; Alcalá-Vida R; Mentxaka G; Kagerbauer B; Zomeño-Abellán MT; Aranda Z; Venturi V; Pérez-Navarro E; Estivill X; Martí E
    J Clin Invest; 2016 Nov; 126(11):4319-4330. PubMed ID: 27721240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AAV5-miHTT-mediated huntingtin lowering improves brain health in a Huntington's disease mouse model.
    Thomson SB; Stam A; Brouwers C; Fodale V; Bresciani A; Vermeulen M; Mostafavi S; Petkau TL; Hill A; Yung A; Russell-Schulz B; Kozlowski P; MacKay A; Ma D; Beg MF; Evers MM; Vallès A; Leavitt BR
    Brain; 2023 Jun; 146(6):2298-2315. PubMed ID: 36508327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
    Liu W; Chaurette J; Pfister EL; Kennington LA; Chase KO; Bullock J; Vonsattel JP; Faull RL; Macdonald D; DiFiglia M; Zamore PD; Aronin N
    J Huntingtons Dis; 2013; 2(4):491-500. PubMed ID: 25062733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of huntingtin function slows synaptic vesicle endocytosis in striatal neurons from the htt
    McAdam RL; Morton A; Gordon SL; Alterman JF; Khvorova A; Cousin MA; Smillie KJ
    Neurobiol Dis; 2020 Feb; 134():104637. PubMed ID: 31614197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9.
    Shin JW; Kim KH; Chao MJ; Atwal RS; Gillis T; MacDonald ME; Gusella JF; Lee JM
    Hum Mol Genet; 2016 Oct; 25(20):4566-4576. PubMed ID: 28172889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HAP40 modulates mutant Huntingtin aggregation and toxicity in Huntington's disease mice.
    Chen L; Qin Y; Guo T; Zhu W; Lin J; Xing T; Duan X; Zhang Y; Ruan E; Li X; Yin P; Li S; Li XJ; Yang S
    Cell Death Dis; 2024 May; 15(5):337. PubMed ID: 38744826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligonucleotides Targeting DNA Repeats Downregulate
    Umek T; Olsson T; Gissberg O; Saher O; Zaghloul EM; Lundin KE; Wengel J; Hanse E; Zetterberg H; Vizlin-Hodzic D; Smith CIE; Zain R
    Nucleic Acid Ther; 2021 Dec; 31(6):443-456. PubMed ID: 34520257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal mutant huntingtin deposition correlates with CAG repeat length and symptom onset, but not neuronal loss in Huntington's disease.
    Layburn FE; Tan AYS; Mehrabi NF; Curtis MA; Tippett LJ; Turner CP; Riguet N; Aeschbach L; Lashuel HA; Dragunow M; Faull RLM; Singh-Bains MK
    Neurobiol Dis; 2022 Nov; 174():105884. PubMed ID: 36220612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Huntingtin silencing delays onset and slows progression of Huntington's disease: a biomarker study.
    Liu H; Zhang C; Xu J; Jin J; Cheng L; Miao X; Wu Q; Wei Z; Liu P; Lu H; van Zijl PCM; Ross CA; Hua J; Duan W
    Brain; 2021 Nov; 144(10):3101-3113. PubMed ID: 34043007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a ligand for in vivo imaging of mutant huntingtin in Huntington's disease.
    Bertoglio D; Bard J; Hessmann M; Liu L; Gärtner A; De Lombaerde S; Huscher B; Zajicek F; Miranda A; Peters F; Herrmann F; Schaertl S; Vasilkovska T; Brown CJ; Johnson PD; Prime ME; Mills MR; Van der Linden A; Mrzljak L; Khetarpal V; Wang Y; Marchionini DM; Skinbjerg M; Verhaeghe J; Dominguez C; Staelens S; Munoz-Sanjuan I
    Sci Transl Med; 2022 Feb; 14(630):eabm3682. PubMed ID: 35108063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease.
    Zeitler B; Froelich S; Marlen K; Shivak DA; Yu Q; Li D; Pearl JR; Miller JC; Zhang L; Paschon DE; Hinkley SJ; Ankoudinova I; Lam S; Guschin D; Kopan L; Cherone JM; Nguyen HB; Qiao G; Ataei Y; Mendel MC; Amora R; Surosky R; Laganiere J; Vu BJ; Narayanan A; Sedaghat Y; Tillack K; Thiede C; Gärtner A; Kwak S; Bard J; Mrzljak L; Park L; Heikkinen T; Lehtimäki KK; Svedberg MM; Häggkvist J; Tari L; Tóth M; Varrone A; Halldin C; Kudwa AE; Ramboz S; Day M; Kondapalli J; Surmeier DJ; Urnov FD; Gregory PD; Rebar EJ; Muñoz-Sanjuán I; Zhang HS
    Nat Med; 2019 Jul; 25(7):1131-1142. PubMed ID: 31263285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease.
    Kolli N; Lu M; Maiti P; Rossignol J; Dunbar GL
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28368337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds.
    Ament SA; Pearl JR; Grindeland A; St Claire J; Earls JC; Kovalenko M; Gillis T; Mysore J; Gusella JF; Lee JM; Kwak S; Howland D; Lee MY; Baxter D; Scherler K; Wang K; Geman D; Carroll JB; MacDonald ME; Carlson G; Wheeler VC; Price ND; Hood LE
    Hum Mol Genet; 2017 Mar; 26(5):913-922. PubMed ID: 28334820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases.
    Handley RR; Reid SJ; Brauning R; Maclean P; Mears ER; Fourie I; Patassini S; Cooper GJS; Rudiger SR; McLaughlan CJ; Verma PJ; Gusella JF; MacDonald ME; Waldvogel HJ; Bawden CS; Faull RLM; Snell RG
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):E11293-E11302. PubMed ID: 29229845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translating Antisense Technology into a Treatment for Huntington's Disease.
    Lane RM; Smith A; Baumann T; Gleichmann M; Norris D; Bennett CF; Kordasiewicz H
    Methods Mol Biol; 2018; 1780():497-523. PubMed ID: 29856033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Gpr52 lowers mutant HTT levels and rescues Huntington's disease-associated phenotypes.
    Song H; Li H; Guo S; Pan Y; Fu Y; Zhou Z; Li Z; Wen X; Sun X; He B; Gu H; Zhao Q; Wang C; An P; Luo S; Hu Y; Xie X; Lu B
    Brain; 2018 Jun; 141(6):1782-1798. PubMed ID: 29608652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.