These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 36510114)

  • 1. Microbial remediation mechanisms and applications for lead-contaminated environments.
    Shan B; Hao R; Zhang J; Li J; Ye Y; Lu A
    World J Microbiol Biotechnol; 2022 Dec; 39(2):38. PubMed ID: 36510114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on mechanism of biomineralization using microbial-induced precipitation for immobilizing lead ions.
    Shan B; Hao R; Xu H; Li J; Li Y; Xu X; Zhang J
    Environ Sci Pollut Res Int; 2021 Jun; 28(24):30486-30498. PubMed ID: 33900555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial remediation and plant-microbe interaction under arsenic pollution.
    Raturi G; Chaudhary A; Rana V; Mandlik R; Sharma Y; Barvkar V; Salvi P; Tripathi DK; Kaur J; Deshmukh R; Dhar H
    Sci Total Environ; 2023 Mar; 864():160972. PubMed ID: 36566865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals.
    Kumari D; Qian XY; Pan X; Achal V; Li Q; Gadd GM
    Adv Appl Microbiol; 2016; 94():79-108. PubMed ID: 26917242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Cd and Pb on soil microbial community structure and activities.
    Khan S; Hesham Ael-L; Qiao M; Rehman S; He JZ
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):288-96. PubMed ID: 19333640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial strategy for potential lead remediation: a review study.
    Pan X; Chen Z; Li L; Rao W; Xu Z; Guan X
    World J Microbiol Biotechnol; 2017 Feb; 33(2):35. PubMed ID: 28120310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial resistance to lead: Chemical basis and environmental relevance.
    Nong Q; Yuan K; Li Z; Chen P; Huang Y; Hu L; Jiang J; Luan T; Chen B
    J Environ Sci (China); 2019 Nov; 85():46-55. PubMed ID: 31471030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation.
    Elizabeth George S; Wan Y
    J Hazard Mater; 2023 Sep; 457():131738. PubMed ID: 37285788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Advances in the bioaugmentation-assisted remediation of petroleum contaminated soil].
    Zheng J; Fu Y; Song Q; Xie J; Lin S; Liang R
    Sheng Wu Gong Cheng Xue Bao; 2021 Oct; 37(10):3622-3635. PubMed ID: 34708615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review.
    Zheng Y; Xiao C; Chi R
    World J Microbiol Biotechnol; 2021 Nov; 37(12):208. PubMed ID: 34719751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review.
    Igiri BE; Okoduwa SIR; Idoko GO; Akabuogu EP; Adeyi AO; Ejiogu IK
    J Toxicol; 2018; 2018():2568038. PubMed ID: 30363677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation.
    Achal V; Pan X; Zhang D; Fu Q
    J Microbiol Biotechnol; 2012 Feb; 22(2):244-7. PubMed ID: 22370357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-microbial remediation of chlorpyrifos contaminated soil.
    Wang X; Hou JW; Liu WR; Bao J
    J Environ Sci Health B; 2021; 56(10):925-931. PubMed ID: 34558375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of hazardous heavy metals by marine microorganisms: a recent review.
    Alabssawy AN; Hashem AH
    Arch Microbiol; 2024 Feb; 206(3):103. PubMed ID: 38358529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil].
    Zheng M; Zhao Y; Miao L; Gao X; Liu Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Oct; 37(10):3535-3548. PubMed ID: 34708609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review.
    Jimoh AA; Ikhimiukor OO; Adeleke R
    Environ Sci Pollut Res Int; 2022 May; 29(24):35615-35642. PubMed ID: 35247173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil.
    Han H; Cai H; Wang X; Hu X; Chen Z; Yao L
    Ecotoxicol Environ Saf; 2020 Jun; 195():110375. PubMed ID: 32200142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial strategies for copper pollution remediation: Mechanistic insights and recent advances.
    Alkhanjaf AAM; Sharma S; Sharma M; Kumar R; Arora NK; Kumar B; Umar A; Baskoutas S; Mukherjee TK
    Environ Pollut; 2024 Apr; 346():123588. PubMed ID: 38401635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead - A review.
    Gul I; Manzoor M; Hashim N; Shah GM; Waani SPT; Shahid M; Antoniadis V; Rinklebe J; Arshad M
    Environ Pollut; 2021 Oct; 287():117667. PubMed ID: 34426392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.