These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36511178)

  • 21. Heteroatom Doping Strategy for Establishing Hematite Homojunction as Efficient Photocatalyst for Accelerating Water Splitting.
    Tao SM; Chung RJ; Lin LY
    Chem Asian J; 2020 Nov; 15(22):3853-3860. PubMed ID: 32955150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices.
    Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N
    ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NiO Nanoparticles Anchored on Phosphorus-Doped α-Fe
    Li F; Li J; Zhang J; Gao L; Long X; Hu Y; Li S; Jin J; Ma J
    ChemSusChem; 2018 Jul; 11(13):2156-2164. PubMed ID: 29768719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of Cobalt-Coordinated Polymeric Perylene Diimide in Hematite Photoanodes for Improved Water Oxidation.
    Gao L; Chai H; Niu H; Jin J; Ma J
    Small; 2023 Sep; 19(39):e2302665. PubMed ID: 37264749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promising Electrocatalytic Water and Methanol Oxidation Reaction Activity by Nickel Doped Hematite/Surface Oxidized Carbon Nanotubes Composite Structures.
    Malik B; Majumder S; Lorenzi R; Perelshtein I; Ejgenberg M; Paleari A; Nessim GD
    Chempluschem; 2022 May; 87(5):e202200036. PubMed ID: 35499139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of α-Fe
    Makimizu Y; Nguyen NT; Tucek J; Ahn HJ; Yoo J; Poornajar M; Hwang I; Kment S; Schmuki P
    Chemistry; 2020 Feb; 26(12):2685-2692. PubMed ID: 31788871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting.
    Li C; Luo Z; Wang T; Gong J
    Adv Mater; 2018 Jul; 30(30):e1707502. PubMed ID: 29750372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the varying mechanisms between the conformal interlayer and overlayer in the silicon/hematite dual-absorber photoanode for solar water splitting.
    Zhou Z; Li L; Niu Y; Song H; Xing XS; Guo Z; Wu S
    Dalton Trans; 2021 Feb; 50(8):2936-2944. PubMed ID: 33555279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile Zn and Ni Co-Doped Hematite Nanorods for Efficient Photocatalytic Water Oxidation.
    Talibawo J; Kyesmen PI; Cyulinyana MC; Diale M
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dendritic Hematite Nanoarray Photoanode Modified with a Conformal Titanium Dioxide Interlayer for Effective Charge Collection.
    Luo Z; Wang T; Zhang J; Li C; Li H; Gong J
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12878-12882. PubMed ID: 28742947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interface Manipulation to Improve Plasmon-Coupled Photoelectrochemical Water Splitting on α-Fe
    Xu Z; Fan Z; Shi Z; Li M; Feng J; Pei L; Zhou C; Zhou J; Yang L; Li W; Xu G; Yan S; Zou Z
    ChemSusChem; 2018 Jan; 11(1):237-244. PubMed ID: 28940828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO
    Fang T; Guo Y; Cai S; Zhang N; Hu Y; Zhang S; Li Z; Zou Z
    Nanotechnology; 2017 Sep; 28(39):394003. PubMed ID: 28879862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of defect-rich Co-CeO
    Pal D; Maity D; Sarkar A; Sarkar D; Khan GG
    J Colloid Interface Sci; 2022 Aug; 620():209-220. PubMed ID: 35428003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting.
    Kim JY; Youn DH; Kang K; Lee JS
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10854-8. PubMed ID: 27489101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferrihydrite-Modified Ti-Fe
    Bu Q; Li S; Wu Q; Bi L; Lin Y; Wang D; Zou X; Xie T
    ChemSusChem; 2018 Oct; 11(19):3486-3494. PubMed ID: 30091281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Acidic Photoelectrochemical Water Splitting Enabled by Ru Single Atoms Anchored on Hematite Photoanodes.
    Li TT; Cui JY; Xu M; Song K; Yin ZH; Meng C; Liu H; Wang JJ
    Nano Lett; 2024 Jan; 24(3):958-965. PubMed ID: 38207219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile synthesis of CoO
    Li H; Ba K; Zhang K; Lin Y; Zhu W; Xie T
    Dalton Trans; 2023 Dec; 53(1):115-122. PubMed ID: 38050724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.