These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36511414)

  • 1. Familiar size affects perception differently in virtual reality and the real world.
    Rzepka AM; Hussey KJ; Maltz MV; Babin K; Wilcox LM; Culham JC
    Philos Trans R Soc Lond B Biol Sci; 2023 Jan; 378(1869):20210464. PubMed ID: 36511414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Familiar size affects the perceived size and distance of real objects even with binocular vision.
    Maltz MV; Stubbs KM; Quinlan DJ; Rzepka AM; Martin JR; Culham JC
    J Vis; 2021 Sep; 21(10):21. PubMed ID: 34581767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocular cues are superior to binocular cues for size perception when they are in conflict in virtual reality.
    Yoo SA; Lee S; Joo SJ
    Cortex; 2023 Sep; 166():80-90. PubMed ID: 37343313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear perspective cues have a greater effect on the perceptual rescaling of distant stimuli than textures in the virtual environment.
    Yildiz GY; Skarbez R; Sperandio I; Chen SJ; Mulder IJ; Chouinard PA
    Atten Percept Psychophys; 2024 Feb; 86(2):653-665. PubMed ID: 38182938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cue-dependent effects of VR experience on motion-in-depth sensitivity.
    Fulvio JM; Ji M; Thompson L; Rosenberg A; Rokers B
    PLoS One; 2020; 15(3):e0229929. PubMed ID: 32150569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtually the same? How impaired sensory information in virtual reality may disrupt vision for action.
    Harris DJ; Buckingham G; Wilson MR; Vine SJ
    Exp Brain Res; 2019 Nov; 237(11):2761-2766. PubMed ID: 31485708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Statistics of Eye Movements and Binocular Disparities during VR Gaming: Implications for Headset Design.
    Aizenman AM; Koulieris GA; Gibaldi A; Sehgal V; Levi DM; Banks MS
    ACM Trans Graph; 2023 Feb; 42(1):. PubMed ID: 37122317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of gaming on accommodative and vergence facilities after exposure to virtual reality head-mounted display.
    Munsamy AJ; Paruk H; Gopichunder B; Luggya A; Majola T; Khulu S
    J Optom; 2020; 13(3):163-170. PubMed ID: 32234359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of monocular and binocular contrast perception on virtual reality head-mounted displays.
    Bhansali K; Lago MA; Beams R; Zhao C
    J Med Imaging (Bellingham); 2024 Nov; 11(6):062605. PubMed ID: 39280782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocular effects of virtual reality headset wear in young adults.
    Turnbull PRK; Phillips JR
    Sci Rep; 2017 Nov; 7(1):16172. PubMed ID: 29170432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereopsis Only: Validation of a Monocular Depth Cues Reduced Gamified Virtual Reality with Reaction Time Measurement.
    Mehringer W; Wirth M; Roth D; Michelson G; Eskofier BM
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2114-2124. PubMed ID: 35167462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When two eyes are better than one in prehension: monocular viewing and end-point variance.
    Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M
    Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of restricted viewing conditions on egocentric distance perception: implications for real and virtual indoor environments.
    Creem-Regehr SH; Willemsen P; Gooch AA; Thompson WB
    Perception; 2005; 34(2):191-204. PubMed ID: 15832569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impacts of lens and stereo camera separation on perceived slant in Virtual Reality head-mounted displays.
    Tong J; Wilcox LM; Allison RS
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3759-3766. PubMed ID: 36048994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceiving distance in virtual reality: theoretical insights from contemporary technologies.
    Creem-Regehr SH; Stefanucci JK; Bodenheimer B
    Philos Trans R Soc Lond B Biol Sci; 2023 Jan; 378(1869):20210456. PubMed ID: 36511405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Virtual Reality Simulation to Identify Vision-Related Disability in Patients With Glaucoma.
    Lam AKN; To E; Weinreb RN; Yu M; Mak H; Lai G; Chiu V; Wu K; Zhang X; Cheng TPH; Guo PY; Leung CKS
    JAMA Ophthalmol; 2020 May; 138(5):490-498. PubMed ID: 32191274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using biomechanics to investigate the effect of VR on eye vergence system.
    Iskander J; Hossny M; Nahavandi S
    Appl Ergon; 2019 Nov; 81():102883. PubMed ID: 31422246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Monocular Spatial Cues on Vergence Eye Movements in Monocular and Binocular Viewing of 3-D and 2-D Stimuli.
    Batvinionak AA; Gracheva MA; Bolshakov AS; Rozhkova GI
    Perception; 2015; 44(8-9):1077-84. PubMed ID: 26562921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation.
    Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T
    Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.