These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36511444)

  • 1. The permeability of pillar arrays in microfluidic devices: an application of Brinkman's theory towards wall friction.
    Hulikal Chakrapani T; Bazyar H; Lammertink RGH; Luding S; den Otter WK
    Soft Matter; 2023 Jan; 19(3):436-450. PubMed ID: 36511444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized Newtonian fluid flow in porous media.
    Bowers CA; Miller CT
    Phys Rev Fluids; 2021 Dec; 6(12):. PubMed ID: 36601019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.
    Ginzburg I; Silva G; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023307. PubMed ID: 25768636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls.
    Scales N; Tait RN
    J Chem Phys; 2006 Sep; 125(9):094714. PubMed ID: 16965112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and optimization of liquid propagation in micropillar arrays.
    Xiao R; Enright R; Wang EN
    Langmuir; 2010 Oct; 26(19):15070-5. PubMed ID: 20806979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.
    Ramakrishnan TS; Goode PA
    J Colloid Interface Sci; 2015 Jul; 449():392-8. PubMed ID: 25748636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of Brinkman and Stokes system conjuncture in human knee joint.
    Al-Atawi NO; Hasnain S; Saqib M; Mashat DS
    Sci Rep; 2022 Nov; 12(1):18992. PubMed ID: 36348000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models.
    Ali D; Sen S
    Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the non-Newtonian lattice Boltzmann model coupled with off-grid bounce-back scheme: Wall shear stress distributions in Ostwald-de Waele fluids flow.
    Vaseghnia H; Jettestuen E; Giljarhus KET; Aursjø O; Hiorth A
    Phys Rev E; 2024 Jul; 110(1-2):015305. PubMed ID: 39160911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading of liquid drops over saturated porous layers.
    Starov VM; Kosvintsev SR; Sobolev VD; Velarde MG; Zhdanov SA
    J Colloid Interface Sci; 2002 Feb; 246(2):372-9. PubMed ID: 16290425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The breakdown of Darcy's law in a soft porous material.
    Rosti ME; Pramanik S; Brandt L; Mitra D
    Soft Matter; 2020 Jan; 16(4):939-944. PubMed ID: 31845717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems.
    Léonforte F; Servantie J; Pastorino C; Müller M
    J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-scale investigation of viscous coupling effects for two-phase flow in porous media.
    Li H; Pan C; Miller CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026705. PubMed ID: 16196749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective medium approximation and deposition of colloidal particles in fibrous and granular media.
    Li Y; Park CW
    Adv Colloid Interface Sci; 2000 Sep; 87(1):1-74. PubMed ID: 11032315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the local viscosity of non-Newtonian fluids flowing through disordered porous structures.
    Eberhard U; Seybold HJ; Secchi E; Jiménez-Martínez J; Rühs PA; Ofner A; Andrade JS; Holzner M
    Sci Rep; 2020 Jul; 10(1):11733. PubMed ID: 32678140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic permeability of membranes built up by particles covered by porous shells: cell models.
    Vasin SI; Filippov AN; Starov VM
    Adv Colloid Interface Sci; 2008 Jun; 139(1-2):83-96. PubMed ID: 18328455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying shear stress to endothelial cells in a new perfusion chamber: hydrodynamic analysis.
    Anisi F; Salehi-Nik N; Amoabediny G; Pouran B; Haghighipour N; Zandieh-Doulabi B
    J Artif Organs; 2014 Dec; 17(4):329-36. PubMed ID: 25213200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.